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Abstract

The Linear Quadratic Guassian / Loop Transfer Recovery (LQG/LTR)

methodology has been widely applied to Liontrol system design, particularly in

Multiple Input Multiple Output (MIMO) systems. One can construct a target loop

transfer function by designing a Kalman filter to meet the performance and stability

requirements, then recover the stability robustness of Kalman filter by tuning a Linear

Quadratic Regulator (LQR). By duality, one may design the LQR first, then recover

with Kalman filter. The outcome of this design is that the designed compensator will

often invert the plant's dynamics. This plant inversion may be undesirable if the plant

has lightly damped poles or moderate frequency unstable poles and non-minimum

phase zeros. This thesis use Static Output Feedback (SOF) method to reassign the

open loop plant poles. The SOF method uses partial output feedback to form a inner

loop; with the inner loop closed the poles can be assigned to a better location.

Alternatively the Robust Eigenstructure Assignment (REA) algorithm was used to

reassign the closed loop Kalman filter poles and preserve the system robustnes, then

design the LQR to recover the Kalman filter loop shape. Results show that the SOF

method can improve system performance and stability, especially for MIMO system

design. The REA method is more flexible for eigenstructure assignment and SISO

system LQG/LTR design, but not as flexible for MIMO system LQG/LTR design,

where frequency domain loop transfer function shaping is required.
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IMPROVEMENTS TO LQG/LTR METHODOLOGY FOR PLANT

WITH LIGHTLY DAMPED OR LOW FREQUENCY POLES

I Introduction

A decade ago, aircraft flight control system design used single channel

feedback control to achieve desired closed loop properties. The approaches were

simple: measure the output (response), amplify or attenuate the signal by using gain

adjustment, then feed it back to achieve desired system response. Design tools, like

root locus, Bode and time response plots were widely applied in aircraft Single Input

Single Output (SISO) design, which satisfactorily handled single channel system

command and response relations. However, aircraft design goals have become very

complex in recent years with more maneuverable, accurate and safe flight control

systems in demand. For this reason , more controls like flaprons, canards and thrust

vectoring were added. Thus, more states or responses can be controlled. The

resulting flight control system is not SISO but Multiple Input Multiple Output

(MIMO). MIMO design using SISO techniques is inefficient and tedious and

sometimes coupled dynamics are excited thus making SISO design tools totally

useless. In the late 70's, MIMO design methodologies like Linear Quadratic

Regulator (LQR), Kalman Bucy filter, Linear Quadratic Gaussian (LQG) or Linear

Quadratic Gaussian with Loop Transfer Recovery (LQG/LTR) and eigenstructure

assignment were developed, allowing control engineers to use these methodologies to

achieve better performance and stability.

The LQG/LTR design methodology uses a full state Linear Quadratic

Regulator (LQR) to satisfy the performance and stability robustness specifications,
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then recovers the stability robustness by tuning the Kalman filter. In a dual this

procedure, the Kalman filter can be designed and then recovered by tuning the LQR.

This method is an improvement of Linear Quadratic Gaussian (LQG) which recovers

the stability margins. The LQG/LTR methodology has been used to design several

successful control systems for aircraft engines, submarines and unmanned aircraft [3,

17, 191. The well-described step-by-step procedures and available softwares, makes

LQG/LTR a convenient tool for control system design. But LQG/LTR has some

limitations on achievable performance. For instance, if the plant has a right-half-plane

zero (non-minimum phase zero), LQG/LTR won't recover the designed transfer

function at the zero's frequency. If the non-minimum phase zero is within the system

bandwidth, the system performance will be degraded. Another major problem with

LQG/LTR is that the compensator will tend to invert the plant and replace it with

desired dynamics. Uncertainty in lightly damped poles in the plant (like lightly

damped short period mode or Dutch roll mode), causes incomplete pole-zero

cancellation and can lead to a closed loop system with a lightly damped pole. This

thesis is a study on improving the LQG/LTR methodology for plant with lightly

damped poles, so that the undesired low damping time response of LQG/LTR can be

prevented.

As stated before, output feedback can improve system performance and

stability. States feedback gives the designer the capability to modify every mode of

the open loop plant; however, this is not practical when the states are not easy to

measure or cost too much to measure. Thus, output feedback is a simpler and more

affordable approach. When the compensator has no dynamics, this method can be

named Static Output Feedback (SOF) or Gain Output Feedback. It use output

feedback with a constant gain to reassign the system closed loop poles . When the

dimension of the output is greater than the dimension of control, the number of poles
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that can be assigned is the same as the dimension of the output. By moving the

plant's lightly damped poles with Static Output Feedback method, the undesired plant

inversion of LQG/LTR can be prevented.

Eigenstructure assignment is a design technique to achieve desired

eigenvalues and eigenvectors. It has great flexibility in determining system

performance, response shape and stability. Combining eigenstructure assignment

with LQR or Kalman filter design can achieve good system performance and retain the

robustness of the optimal controller. This method is named Robust Eigenstructure

Assignment (REA). In the LQG/LTR design process, this method can be used to

assign the LQR or Kalman filter closed loop poles to desired locations, then by the

separation principle of LQG, the LQG/LTR closed loop system will have no undesired

poles.

The two methods above will be studied to determine the effectiveness of how

they may improve LQG/LTR closed loop system characteristics to avoid undesired

plant inversion.

1.1 Problem Statement

Consider a linear time-invariant model with n dimension of states, m

dimension of controls and r dimension of outputs. It has dynamics in state space form

it (t) = A x(t) + B u(t) (1)

y (t) = C x(t) (2)

The transfer function matrix of the design model, often a square matrix, is given in

Laplace domain as

G(s) = C D(s) B (3)



where

O(s) =s I - A )-1 (4)

We shall assume that [ A, B I is stabilizable, i.e., all unstable modes of Eq (1) are

controllable, and [ A, C ] is detectable, i.e., all unstable modes in Eq (1), (2) are

observable. Then the LQG or LQG/LTR compensator can be obtained, with the full

LQG compensator and plant model as in Figure 1.

LQG compensator B
KIs Plant

r a b- + u
Su

Figure 1 LQG Compensator and Plant Model

Following the LQGILTR two step design procedures described by Ridgely [20: 9-1 -

9-151 and Athans [3:1289-12961, break the loop at the plant output (point a) and

design the Kalman filter first by choosing a fictitious disturbance matrix F and noise

intensity 4 , to approximate the loop transfer function,

1

TKF = COKf = o I [CcW"]
T4 (5)

where Kf is Kalman filter gain matrix, ai is singular value. Next design LQ Regulator
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with weighting matrices

Q = HT H + q2CTVC (6)

R, = p 1 (7)

where H is a weighting matrix on state deviation. HTH is symmetric, positive

semidefinite, and normally chosen to be a unity matrix. p is the weighting on controls.

By selecting q, a scalar, with increasingly larger values, as q2 00 -, the LQ

Regulator will gradually recover the target loop shape of the Kalman filter TKF, so that

G(s)K(s) _= C4B[(CB)-BIC4Kf] =G(s) KLQ,/LTR(s) (8)

The LQG/LTR compensator design will normally invert the plant's dynamics and

replace it with the compensator's dynamics. The compensator will have zeros close to

the plant open loop poles and when the open loop plant has lightly damped poles, like

a pair of low damping Dutch roll poles, the compensator will put its zeros close to the

poles. If the measurement of pole location involves any degree of uncertainty, then the

closed loop system may not have exact pole-zero cancellation, resulting in lightly

damped closed loop poles. This is a undesired design result of LQG/LTR.

1.2 Background

The LQG/LTR design procedure proposed by Doyle and Stein [5: 4 -16] has

been proven to be a simple and effective design methodology for scalar and

multivariable systems. The LQG/LTR design procedure offers loop transfer function

shaping techniques for design in the frequency domain with the properties of an

optimal full state LQR or Kalman filter, then frequency -wise recovery to the desired

loop shape at either the plant input or output. LQG/LTR thus obtains good

5



performance and stability robustness. When the plant has non-minimum phase zeros,

full recovery of the designed transfer function is not possible; the final loop shape

does not have desired shape and system performance and stability are affected. This

non-minimum phase zero problem has been studied by researcher like Stein and

Athans [21 and Zhang and Freudenberg [231. A suggested method is to select

sensitivity and complementary sensitivity weightings to achieve H2 type

optimization, by factorization to a minimum phase plant with non-minimum phase

constraints. When the open loop plant has lightly damped poles, the effect of plant

inversion and uncertainty in the plant dynamics is to cause the closed loop system to

have undesired low damping, resulting in poor time domain characteristics. This

shortcoming of undesired inversion of lightly damped plant poles in LQG/LTR design

hasn't been studied or corrected by any known researcher.

Static Output Feedback (SOF) or Gain Output Feedback is a method of

feeding back the measurable output with a constant gain to assign desired

eigenvalues (and eigenvectors). It is a more practical and feasible method than full

state feedback. Moreover, this method modifies the system response and mode

shape without increasing the dimension of the closed loop system. Several papers on

the thenry have shown the assignability of the eigenvalues and eigenvectors using

constant output feedback [5, 14, 221. Andry and Shapiro showed an algorithm to

calculate the compensator constant gain matrix to achieve eigenvalue and eigenvector

assignment 11]. Those studies showed that with a system as in Eq(1) and (2),

maxim, r] number of eigenvalues can be assigned, and maxlm,r] eigenvectors can be

assigned with minim, rl elements of the eigenvectors arbitrarily chosen. By using

Static Output Feedback to assign the pole locations of the open loop plant before the

LQG/LTR design. undesired plant inversion should be avoided.

Combined eigenstructure assignment and linear quadratic optimal controller

6



design is a method which utilizes the flexibility of eigenstructure assignment and the

robust property of LQR or Kalman filter to design a closed loop system with both good

time domain characteristics and robustness. This method was first introduced by

minimizing a cost function that provides a tradeoff between desired and achievable

eigenvalues and eigenvectors. Harvey and Stein [101 developed a method that uses

the asymptotic properties of LQR to place eigenvalues and uses a linear projection to

determine the achievable eigenvectors. Robinson [221 developed an algorithm using

MATLAB software to provide eigenvalue placement using the LQR. Huckabone [1 I1

wrote a Fortran program to assign the closed loop eigenstructure as close to desired

as possible within the constraints of the LQR stability margins. In this thesis,

Huckabone's Fortran program was used to find the achievable closed loop eigenvalues

for Kalman filter design, and the returned parameters were used for LQG/LTR design.

By using this method, not only were the frequency domain properties of loop transfer

function shaped, but the eigenstructure of the closed loop system was specified.

7



1.3 Organization

This thesis is organized as follows:

Chapter II: Development of the theories for LQG/LTR, Static Output Feedback, and

Robust Eigenstructure Assignment. Definition of performance and stability

robustness.

Chapter III: A-4 aircraft SISO and MIMO system designs, using nominal, Static

Output Feedback, and Robust Eigenstructure Assignment methodologies. Display all

the design results and do a detailed analysis. The results from three designs are then

compared with each other.

Chapter IV: X-29 experimental aircraft MIMO system design and analysis, using only

nominal and Static Output Feedback methodologies, compare the results of these two

design.

Chapter V: Summarized the design results and analysis, then suggest study

directions for further research.

Appendix A: Design model state space A and B matrices.

Appendix B: MATLAB M-Files for the Static Output Feedback designs.
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II Theory

2.1 Background

The purpose of control system design is to aid the product or process - the

mechanism, the robot, the chemical plant, the aircraft or whatever - to do its job.

Feedback theory has been developed to achieve the higher level of this goal; feedback

design can be used to stabilize an otherwise unstable system, reduce the error in

command following due to plant disturbance, and reduce the sensitivity of a closed

loop transfer function to variations in system parameters. For a system with the

feedback loop given in Figure 2

d(s)

Figure 2 Linear System Compensator and Plant Block Diagram

the control design problem is to specify the dynamic compensator K(s), for the plant G

described by

x (s) = A x(s) + B u(s) (9)

y (s) =C x(s) (10)

with n being the state dimension , m the control dimension , and r the output

9



dimension . The compensator has r inputs ( the tracking error or state deviation

signal) and m outputs ( the input to the plant ), is assumed to be linear, time-

invariant, and should meet specification related to:

(a) Nominal stability

(b) Nominal performance

(c) Stability robustness to modeling error

The most critical specification is the need to be stable and maintain this stability when

encountering plant parameter variations.

LQR is a method for designing a compensator to stabilize a system and keep

the plant in equilibrium. As long as the plant is stabilizable and detectable, the LQR

compensator always results in a guaranteed stable closed loop system [24]. The gain

and phase margins exhibited by Linear Quadratic design based on full state access are

given by

-6db < Gain Margin < cc

- 60 deg < Phase Margin < 60 deg.

However, access to all the states is not always possible, so an observer is

often required to estimate the states which are not accessible. The estimated state is

then compared with the measured output and gained so as to converge the error

between actual and estimated state with the effects of noise minimized. This is the

Kalman filter. The LQG compensator is a combination of the Kalman filter and LQ

Regulator. A well known consequence of the observer based compensator is the loss

of guaranteed stability margins [ 7 1. Doyle and Stein 1 6 1 developed an LQG design

procedure that recovers the desired robustness properties of LQR. This procedure

later came to be known as LQGJLTR. LQG/LTR is an integrated procedure in the

sense that it uses both frequency and time domain concepts to achieve the

10



performance and robustness requirements. It is accomplished by tuning the state and

control weighting matrices in the quadratic cost function

J = f(X + Ru) dt
(11)

to recover the LQ design. Q and R are weighting matrices for LQR or Kalman filter,

depending on whether the system loop is broken at plant input or output, respectively.

Either approach is valid and the choice is driven by the nature of the plant and the

location of the uncertainty in the system.

Uncertainty in the plant dynamics and measurements may be modeled as either

injected into the input of the plant, or appearing as an additive disturbance at the plant

outputs. Input uncertainty can arise from unknown environmental forces acting on the

system; for instance, the nonlinearity of an actuator or flexibility in the control system

mechanism. Such a system would yield highly predictable outputs when the inputs are

accurately known, but would still display some uncertain outputs as the result of

uncertain inputs. Output uncertainty for aircraft, like aeroelasitic effects of the

structure when the aircraft flies through the air; sensor measurement noise, etc.,

affects system outputs. For this thesis we deal with output uncertainty only. The

uncertainty involved in this study is limited to unstructured, multiplicative uncertainty

as shown in Figure 3

u+s)

u(s)- + +o sYs)

Figure 3 Output Multiplicative Uncertainty
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Thus

G(s) = [+ E(s) I Go(s) (12)

where G(s) is the true plant transfer function and Go(s) is the nominal plant transfer

function. We will design the Kalman filter with recovery through tuning the LQ

Regulator in LQG/LTR design. Ridgely and Banda's Technical Report [ 201 and

Athans's tutorial [ 2, 3] have exrellent presentation of the detailed procedures about

designing an LQGILTR compensator. Although LQG/LTR is shown to produce a

controller which provides good performance and stability, there still exist some

shortcomings. When the plant has non-minimum phase zeros they hamper the fully

recovery of stability robustness at frequencies near the zero; when the plant has

lightly damped pole, they cause closed loop system to have a resonant response;

when the plant has moderately high frequency unstable poles the system bandwidth

rises. In anticipation of unstable and lightly damped poles, the techniques of Static

Output Feedback and Robust Eigenstructure Assignment can be used to improve pole

location prior to application of LQGILTR. The following theory development will

describe LQG/LTR design and the pole assignment techniques.

2.2. LQG/LTR

rhe LQG/LTR methodology seeks to design the compensator K(s) so that

stability robustness and performance specifications are met. LQGILTR is applicable

to both SISO and MIMO design, but is inherently a multivariable design method. By

this we mean that LQG/LTR method does not reduce the MIMO design problem into a

sequence of SISO design problems, instead, it solves the MIMO design problem

directly. The steps and philosophy are independent of the number of states, controls
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or output variables. When applying LQG/LTR method to SISO and MIMO systems,

several factors should be noted:

(a) Matrix multiplication is not commutable in the MIMO case, so the open loop

transfer function of breaking the loop at plant input, which is KG, is different from

the open loop transfer function of breaking the loop at plant output, which is GK.

Thus, in MIMO design, system performance and stability robustness need to be

considered at both plant input and output.

(b) For SISO system design we use classical Bode magnitude and phase angle plots

to evaluate system performance. In MIMO systems the transfer functions are a

matrix of transfer functions, so the magnitude of the transfer function matrix is best

expressed by a norm of the matrix - the singular values of the transfer function.

These can be plotted frequency -wise, with the - . *,nun and minimum singular

value curves containing the freq"cncy domain information.

(c) Measuring gain and phase margins by analyzing the Nyquist plot is used for

SISO systems. Although MIMO system gain and phase margins may also )e

derived by the same concepts as Nyquist plot, it is much more complicated.

Rather, margins are often defined as Independent Gain and Phase margins, which

are calculated by using the return difference, sensitivity or complementary

sensitivity of the transfer function. These calculations will be discussed later in

this section.

Generally, LQG/LTR procedures for a MIMO system is more complex than for

a SISO system. This theory development section will only discuss MIMO system

LQG/LTR design.
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2.2.1. Singular Values. In the previous section we briefly mentioned that the

determination of the magnitude of a SISO transfer function and a MIMO transfer

function is different. For the SISO problem it is relatively easy; in a MIMO problem,

the transfer function is a matrix of transfer functions. The size of a MIMO transfer

function matrix is found by defining the norm of the matrix. The singular value is one of

the norms used for determining the size of a matrix. Singular values are denoted by

a• and are defined by

a1i(A) = X•(AA ) = / 'AA) (13)

where i = 1,2 ....... min [rows in A, columns in A], A is a matrix of complex numbers,

A* denotes the complex conjugate transpose of A, and Xi is the ith eigenvalue. The

notation describing the maximum and minimum singular values is a and _T

respectively. The most common vector norm, the Euclidean norm, is defined by

Ilx12 = < x,x > - x x (14)

The Euclidean norm of a vector is used in defining the spectral norm of a matrix, as

given by

1"12 = ,sup 1IA x112IIx112  (15)

where x # 0. The supremum is often difficult to calculate directly, so the following is

useful
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IIAIl 2 = max {I i (A* A) }

= max { i(AA)}

= a(A) (16)

where i = 1,2 ...... min [rows in A, columns in A]. Another useful identity involving

singular values is

IIA -'112 - 1I (A) (17)

Some of the singular values properties useful for deriving performance and stability

robustness criteria can be found in Ridgely's Technical Report [ 20: 2-9-2-13].

2.2.2. Performance and Stability Robustness Requirement Consider the

system in Figure 2. We can derive the input and output relationships

e = r-n-y (18)

y = d+GKe (19)

where e is the error between reference input and output. Substitute Eq (18) into Eq

(19)

y = d+GKr-GKn-GKy (20)

or

[I+GKly = d+GK[r-n] (21)

then

y = [I+GK]-IGK[r-n]+[I+GK]-ld (22)

or
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y = II+G-K1-GKr-II+GKJ-IGKn+[I+GKl-ld (23)

The relation of cnimand disturbance and noise to output can be observed from Eq

(23).

We define

GK loop transfer function

I + GK return difference transfer function

I I + GK 1-1 sensitivity, denoted as S

I I + GK ]-'GK complementary sensitivity or closed loop transfer function,

denoted as T

2.2.2.1 Tracking Performance Output following of the reference signal

is usually a system requirement. This reference signal is normally confined to some

frequency band. For an aircraft, pilot input frequency normally is low and we assume

the noise to be negligible at this frequency, by linearity, ignore d for now. Then Eq

(23) gives

y = [I+GKI1-GKr (24)

For good command tracking, we need

[I+GK]-IGK =I (25)

When GK >> I, we have

T = [I+GK]-IGK [GK GK - T (26)

or from Eq (24) and with the equality of
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T = I-S (27)

we get the relationship of

y = [I-S]r (28)

Thus, for good command tracking, we need S to be small. We know that

S = [I+GK]-' (29)

This means we have to have the singular values of the open loop transfer function GK

large for small sensitivity. To say a MIMO transfer function matrix has "small"

magnitude is equivalent to the maximum singular value is small, and "large"

magnitude is equivalent to the minimum singular value is large. Therefore, from Eq

(26) and (29), we can conclud that for good command tracking we need to have - [

GK ] large and thus low sensitivity at all frequencies where we want good command

following.

2.2.2.2 Disturbance Rejection From Eq (23), assuming the command

signal and noise to be zero, we get the following relationship:

y = -[I+GK]-Id (30)

or

y = -Sd (31)

The above two equations show that good disturbance rejection requires sensitivity

(S) small, and this requires GK large. That is, o [GKI needs to be large at

frequencies where we have disturbances.
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2.2.2.3 Noise Rejection. From Eq (23), assuming the command signal

and disturbance are zero, we have

y = [I+GK1-]GKn (32)

or

y = [I-Sln (33)

For good noise rejection we need have [ I + GK 1-1 GK small, which means that T

should be small at all frequencies where we expect measurement noise. By applying

the matrix inversion lemma and some algebra, we obtain:

a[I+GK ]-GK = o[(I+(GK ) )-I ]

-1

(I+ (GK)-) (34)

Thus by Eq(32), for good noise rejection, we want g [ I + (GK)-I I large or g (GK)-I

large. This is the same as i [GK] small, and by Eq (32) or Eq (33) we also can

directly tell that for good noise rejection, we need the singular values of

complementary sensitivity to be small or sensitivity equal to unity.

2.2.2.4 Bode Phase Delay Limitation. Doyle [ 61 shows that the

steepness of the singular value curve near crossover frequency has a large effect on

stability and stability robustness. Steepness greater than - 20 db/decade means the

existence of excess effective poles at the crossover frequency. Therefore, the

singular value curve should cross the zero db line with a slope less than or equal to -

20 db/decade.
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2.2.2.5 Stability Robustness. In a classical SISO problem, tradition

dictates that gain margin (gin) and phase margin (pm) characterize tolerable

uncertainty. These margins are suitable for output multiplicative uncertainty in the

following form:

g (s) +8 g (s) I (1 +E )g(s) (35)

where E is an arbitrary real scalar with abs (E) _< gm In (10) / 20 for pure gain

uncertainty. Alternatively, E is an arbitrary imaginary scalar with

abs (E) _< pm / 57.3 for pure phase uncertainty. This characterization can be

generalized to the MIMO problem as

G(s)+ 8G(s) = [I+E(s) IG(s) (36)

Let L(s) be an arbitrary positive function with

t[EjOco)] •_ L(o) (37)

L (o) covers simultaneous gain, phase and direction errors which are unknown but

bounded in size. The bound L (o)) indicates the maximum normalized magnitude

which the model error can attain; it is typically small at low frequency but invariably

rises toward unity and well above unity as frequency increases. It has been shown in

Ridgely's Technical Report [ 201 that stability is maintained in the presence of all

possible uncertainty characterized by Eq (37), if and only if the complementary

sensitivity ( closed loop ) transfer function satisfies
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- 1
a[ T(jco)] 5

L (co) (38)

This condition leads to " keep T (jo) small wherever L (o) is large". This also can be

interpreted as restricting closed loop bandwidth to the frequency range over which the

plant model is valid.

2.2.3. Desired Loop Shape and Specifications In the previous section we

developed the requirement for good performance and stability robustness, good

command tracking, noise and disturbance rejection, and robustness. Sometimes both

sensitivity (S) and complementary sensitivity (T) need to be small, but since

S(s)+T(s) = I (39)

S and T cannot both simultaneously be small. Rather, we must trade off the size of

one function against the size of the other, in accordance with the relative importance of

command tracking , noise, disturbance rejection and model uncertainty at each

frequency.

Normally, the output of the system dynamics can be assumed to be dominated

by unmodeled dynamics and noises at high frequency, while the disturbances and

commands are assumed to lie in relatively low frequency. Command following and

disturbance rejection normally require g ( GK ) > 20 db at frequencies less

than 0.1 rad/ sec. It is also required that all output variables have zero steady state

error to constant reference inputs, thus dictating integral augmentation. This

means the low frequency loop shape must have a minimum of 20 dB at 0.1 rad/sec
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frequency, increasing at 20 db/decade backwards in frequency from 0.1 rad/sec. This

low frequency requirement should also cover the low frequency uncertainty.

Uncertainty normally varies with frequency; it is small and approximately constant at

low frequency, then at a certain frequency it starts to grow without bound. For this

thesis, the uncertainty is constant at low frequency. At some point it start to increase

at 20 db/decade, so as to cross the zero dB line at 20 rad/sec. This defines L(Co),

which from the small gain theorem the loop shape must be above its reciprocal. From

the above, to satisfy performance and stability robustness requirement when shaping

the loop transfer function , we can put " barriers " on the frequency plots. A desired

loop shape should have an open loop transfer function singular value curve which

stays outside of this " barriers ". An example of a desired loop shape, performance

and stability robustness requirement barriers is shown in Figure 4. The barriers in

Figure 4 will be used for further design and analysis.
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Figure 4 Example of Desired Loop Shape and Barriers
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2.2.4 Linear Quadratic Gaussian.

2.2.4.1 Linear Quadratic Regulator. Consider a system as in Eq (1)

and (2). The Linear Quadratic Regulator problem is to find the control signal which

will minimize the deterministic cost function

J = f zT(t) Q z(t) + uT(t) R u(t) I d(0
.to (40)

where z = H x is some linear combination of the states which are important to system

control, and Q and R are such that

Q = QT > 0, R = RT > 0 (41)

Then we can find a controller by letting the control signal u be a linear function of the

state,

u = -K x (42)

Kc is the optimal state feedback gain matrix, which is given by

Kc = R-I B TP (43)

where P is the solution of algebraic Riccati equation

ATP+PA-PBII BTP+qO = 0 (44)

and P is symmetric, positive semidefinite. If [A, B] is stabilizable and [A, H] is

detectable, then the closed loop regulator
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x(t) = (A- B K') x(t) (45)

is asymptotically stable.

Now we will examine the stability robustness of the LQ Regulator. The

simplified block diagram of the LQ Regulator with full state feedback is:

r=-O u x
(sI ý- A)- AB

Figure 5 Simplified Block Diagram of Closed Loop LQR

The closed loop tra~i~t ., function for a SISO system in Figure 5 is

-1

TFC1 = (jcoI- A) B

1+KK(jcoI-A) B (46)

The I + Kc (jco I - A )-I B term is referred to as the return difference function.

Robustness for a SISO system is typically measured using gain and phase margins.

The gain margin is defined as the amount the gain Kc can be changed before the closed

loop system becomes unstable. The system becomes unstable when the value of the

return difference is zero. Phase margin is the amount of phase shift that can be

tolerated before the closed loop system becomes unstable.

For a MIMO system, the return difference becomes the matrix

I + Kc (jw I - A)-IB. The definition of gain and phase margins for SISO systems

cannot applied to a MIMO system. Ridgely [ 20: chapter 31 gave the definitions of

independent gain and phase margins, which are suitable for measuring the stability of

MIMO system:
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Independent Gain Margins (1GM) are limits within which the gains of all

feedback loops may vary independently at the same time without destabilizing the

system, while the phase angles remain at their nominal values.

Independent Phase Margins (IPM) are limits within which the phase angles of

all loops may vary independently at the same time without destabilizing the system,

while gains remain at their nominal values. [ 20: 3-73]

Ridgely also derived the equations for calculating IGM and IPM:

1 < IGM < I
I + ot1 - a (47)

-2 sin-'(-) < IPM < 2 sin-'(-)
2 2 (48)

where a is the minimum singular value of the return difference matrix given by

cc = info[ I+KcjcoI-A)-B] (49)

and (x < 1. It should be noted that these equations for the MIMO stability margins

are based on errors that are multiplicative in nature and they are conservative. The

system may be able to accept more gain and phase change than the calculated IGM

and IPM.

Ridgely also derived the Kalman Inequality [ 20: 7-1- 7-31, which is

R1/2 -1 1l2T R/2 -1I 1

[I+R K,(-jcoI-A) BR [I/+R1+ / K,(-jcoI-A) BR-2] > I (50)

where R must be positive definite. When R = p I, where p is any scalar value, the
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Kalman Inequality can be reduced to

[I+KC(-jo)I-A) B T[I+ K,(-jeoI-A)- BI _ I (51)

The above inequality is true, if and only if

a = Q[I+Kc(j0oI-A)-1 B] I (52)

In the extreme case (X = 1, from Eq (47) and (48), the IGM and IPM for this limiting

case are

-6db < IGM < -c (53)

-60 deg < IPM < +60deg (54)

Safonov and Athans C 241 proved that any diagonal R matrix will result in the above

guaranteed stability margins, as long as the perturbations in each channel occur

independently of one another. The guaranteed stability margins are good for LQR

designs when using the "design model", but not good for the real system which has

unmodelled dynamics.

2.2.4.2 Kalman Filter. Given the linear time invariant system

0(t) = A x(t) + B u(t) + F V(t)

y(t) = C x(t) + rl(t) (55)

with ý(t) and rl(t) being zero mean, wide sense stationary, uncorrelated, white

Gaussian noise with intensities
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E 4 (t) ýT('T) I 8(t- _ T

E [l(t) rlT(t) = Rf ( t- T) (56)

where

Qo = Q0T > 0, Rf RfT > 0 (57)

a unique Kalman filter gain matrix exists which minimizes the expected value of

E I eT (t) e (t) ], where

e = x(t)- (t) (58)

x(t) is defined by

x(t) = Ax(t) + B u(t) + Kf[ y(t)- C x(t) (59)

and

Kf = I CT RfR (60)

where I is a symmetric, semidefinite constant matrix, which is the solution of the

algebraic Riccati equation

f = 0 (61)

Then the Kalman filter closed loop poles are given by the poles of the error dynamics

26



e(t) = [A-Kfle(t) +IFrKf/] (t)(62)
[rl,(t)] (62)

which are asymptotically stable if and only if [A, C] is detectable and [A, r] is

stabilizable. The Kalman filter also possess the same guaranteed stability margins as

LQ Regulator.

2.2.4.3 Linear Quadratic Gaussian Compensator. The Linear Quadratic

Gaussian (LQG) compensator is simply the combination of the Kalman filter with the

LQ Regulator. Under LQG assumptions, the optimal stochastic controller has the

certaint.y equivalence property. Under the certainty equivalence property, each

component can be designed independently, with no knowledge of the other. In other

words, the LQ Regulator is designed deterministically, assuming complete and

accurate knowledge of the state, while the Kalman filter is designed based only on the

noises assumed in the system. Cascading the filter with the LQ Regulator yields the

optimal stochastic controller. This combination of the two is guaranteed to be the

optimal solution for the regulation problem when faced with linear combinations of

states and noisy measurements.

We can now derive the state space representation of the complete system.

The input to the plant, u, is given by

u = -Kcx (63)

Substituting Eq (63) into Eq (59) yields
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x(t) = [A-BKc-KfClx+Kfy (64)

Taking the Laplace transform of Eq (64)

x(s) = [sI-A+BKC+KfC] 1Kfy(s) (65)

Finally, substituting Eq (65) back into the Laplace transform of Eq (63) gives the

expression for the LQG compensator

-1

u(s) = -Kc[sI-A+BKc+KfC] Kfy(s) (66)

2.2.4.4 Loop Transfer Recovery. Ridgely gave a counterexample in his

Technical Report [ 20; 8-1 - 8-71, showing that the observer based LQG compensator

will lose guaranteed stability margins of full state regulator. Doyle and Stein [ 71 also

showed same robustness detriment when using an observer to estimate the states.

The better the regulator and observer performance, the worse the stability robustness.

Doyle and Stein developed a method to "tweak" the filter's components to recover LQ

Regulator robustness [ 6]. This method is named Loop Transfer Recovery (LTR).

In the preceding sections, we described that the filter's job as estimating the

states of the system optimally, but LTR requires modifications of the parameters

associated with the stochastic nature of the plant. Since the design of the filter and

rL.gulator is now based on modified parameters, the goal of producing a controller

meeting the specifications supercedes the preceding goal of producing optimal

estimates and providing optimal control. The filter or regulator is detuned from design

conditions in order to enhance robustness. The variables describing noises become
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tuning parameters. With LTR, uncertainties are reflected by uncertainty bounds,

which were discussed in previous section.

One parameter modification concerns the definition of the estimator Riccati

equation

T Ti TAX +X A +FFT - Y-C CX = 0
9 (67)

This modification is the result of using Qf = I and Rf = g I in Eq (61), where these

definitions are sufficient to design the Kalman filter with desired loop shapes, followed

by LTR tuning with an LQ Regulator. Now V is a design parameter used to affect the

loop shape of the filter.

We also alter the regulator's Riccati equation

A T P+PA-PBR RI BT +Qc 0 (68)

where

Qc = HT H + q2CTVC (69)

and

Rc = p 1 (70)

Substituting these into the regulator's cost index, Eq (40), we obtain

f xT(t) (HTH + q2 CTv C) x(t) + 1 u)(t) u(t) ] d!

9(71)
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These definitions include the designer chosen parameters, q, p, r, V, and .t.

Previous development relies on these parameters to define the noise in the system

and the weighting applied in the performance index. Here these values are chosen to

achieve the goal of meeting the specifications as reflected by the "barriers" in the

frequency domain. The amount of uncertainty in the system is included in the

"barriers".

First, the designer selects pt and r such that the singular value plots meet the

specifications in the lower frequencies. Ridgely [ 20: 9-8 - 9-151 shows the low

frequency singular values of the Kalman filter approximate the singular values of the

open loop filter as

(Ti [TKF] 1 ji [TFOLI
YTV (72)

where
-1

TFOL= C[sI-A] F

TK= C[sI-A]IK I  -(73)

Therefore, pi acts as a gain to raise or lower the singular value plot of TkF. The matrix

F is chosen by the designer to affect the shape of the singular value curves. Different

choices for this matrix can move the singular value curves closer together in different

frequency bands.

Next, the designer uses the values of r and pt to solve the modified Riccati

equation as given in Eq (68); this solution is then used to find the Kalman filter gain

matrix

I1 C
Kf= -2C

Vt (74)

30



This procedure is iterated until the singular value curves meet the specifications.

The recovery of the loop shape is accomplished through the design of the LQ

Regulator. The regulator is designed by solving the algebraic Riccati equation given in

Eq (69), (70), with V, p, and H chosen by the designer. V is often set to identity in

order to apply equal weight to each of the outputs. The parameter p is arbitrarily

chosen, but must be positive, since R, must be positive definite. In this thesis p = I

is used. Eq (71) illustrates the effects of p and V on the problem. These parameters

determine the weighting applied to control usage relative to the weighting on the

deviations of the states from the nominal. Higher value for p lessen the importance of

control usage in the cost function, but relative weighting is absorbed into the

parameter q2 allowing the arbitrary selection of p. Asymptotically, the controller will

invert the plant as q 2-_oo, leaving the open loop transfer function identical to the filter

transfer function.

2.3 Static Output Feedback

When control engineers found that sometimes it is not possible to have full

state feedback to design the controller, they started to develop a procedure based on

using only the measurable variables as feedback. Davison [ 5 ] showed that for the

system given by Eq (1) and (2), if the system is controllable and if rank[C] = r, then a

linear feedback control law of the form

u = Fy (75)

can always be found so that r eigenvalues of the closed loop system matrix (A +

BFC) are arbitrarily close ( but not necessary equal) to the r preassigned values.
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Later, Davison found that if the system is controllable and observable and if rank[B] -

m and rank[C] = r, then max(m, r) eigenvalues are assignable almost arbitrarily.

Kimura [14 ] showed that if the system is controllable and observable and if

n 5 (r +m - 1), then an almost arbitrary set of distinct closed loop poles are

assignable by output feedback. However, in practice n > (r + m - 1) generally.

When considering the entire eigenstructure assignment using output feedback,

Shapiro [ I ] stated that given the controllable and observable system in Eq (1) and

(2), with the assumptions that the matrices B and C are of full rank, then max (m, r)

closed loop eigenvalues can be assigned and max (m, r) eigenvectors ( or reciprocal

vectors by duality) can be partially assigned with min (m, r) entries in each vector

arbitrarily chosen using gain output feedback, i.e., with a control law as Eq (75).

Andry and Shapiro [ 1] presented a techniques, by which max (m, r) number of the

system's poles can be shifted, with the remaining poles drifting to unassigned

positions. Furthermore, this method allows almost arbitrary assignment of portions of

the system eigenvectors. By Andry's method, the output feedback problem is to find a

constant gain matrix Ks, with dimension m x r, which performs the reassignment of

the poles through inner loop feedback. In other words, the plant's inputs become a

combination of external input and gain-modified outputs. The state equation for the

new system with Ks in place becomes

9 = Ax+B[u+Ksy] (76)

y = Cx

Through output feedback, Eq (76) becomes

k = [A +BKsC]x+Bu

y= Cx (77)
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2.3.1 Eigenvector assignability. In Andry's paper, procedures for finding the

output feedback gain matrix Ks are stated. The procedures we will use are stated

here. By the definition of the eigenvalue, eigenvector pair (Xi and vi)

IA+BKsCIvi = Xivi (78)

or

vi = [I, I-A ]-I BKs C vi (79)

where the eigenvalues are assumed distinct, allowing the matrix inverse operation.

Eq (79) shows that vi must lie in the subspace spanned by the columns of

I ,iI - A [-1 B, which is of dimension rank(B). Hence, the eigenvectors must lie in a

space with dimension equal to rank(B).

Since the desired eigenvector will probably not lie precisely in the subspace

mentioned above, a best possible choice ( in the least square sense ) is made. That

is, an achievable eigenvector ( via) is the result of a projection of the desired vector (

vid) onto the subspace spanned by the columns of [Xi I - A] B. vid is chosen so that

designer can accomplish the specific response shape, such as coupling or decoupling

modes of the system. The unassigned element can be Lft in the original form.

This projection of the desired eigenvector on the achievable subspace is

calculated by first defining

Li = [ Xi I - A I B (80)

Since the allowable eigenvector must lie in the space spanned by the columns of' Li,

via = Li zi (81)
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where zi is an m dimensional vector. When using a projection method to minimize the

least square error, zi is calculated as

T -I T d
i [Li Li] Li Vi (82)

Substituting into Eq (81) yields

a = Li[L LTiL iTV (83)

2.3.2 Partial assignment of desired eigenvector. In many practical situations,

complete assignment of eigenvectors is not required, but rather the designer is

interested only in certain elements of the eigenvector. For this situation, assume the

desired eigenvector vid has following structure

vii
x

d xVi =Vi v ij

x

Vin

where vii are designer specified elements and x is unspecified elements. We define

the reordering operator as {. }Ri and reorder vid as

(v Ri [ ýI1

where I i is a vector of specified elements of vid and di is a vector of unspecified

34



elements. The rows of the matrix (Xi - A )-1 B need to be reordered to conform with

the reordered elements of vid as

{0.iIA)-IB BI = L'i]

Then we can proceed in precisely the same manner as in Eq (82), (83), with 1I

replacing vid and L'i replacing Li to obtain the projection of achievable eigenvector.

2.3.3 Static Output Feedback Gain (Ks) Calculation. After we get the desired

eigenvectors (or their projection lies in the achievable subspace), we can start to

calculate the gain matrix Ks. We begin by transforming the system such that the B

matrix becomes

[0l J(84)

this transformation is accomplished by finding a matrix T, such that

x = T x' (85)

The T matrix can be defined as

T = [IBI [Pl (86)
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where P is any matrix such that T is invertible. Now , using this matrix as a similarity

transformation

A' = T-1AT

B' = T1 B

C' = CT (87)

A desired eigenvector or its projection on the achievable subspace is also transformed

as

vid' = T-1 vid (88)

Subsequent development is performed under the assumption that the system

has been transformed according to Eq (87) and (88).

Recalling the equation for the closed loop eigenvalues and eigenvectors

[XiI-Alvi = BKsCvi (89)

rewrite Eq (89) in partitioned form

E [Xilm-All] [-AI2l ][i]] Zi [I K [ [Zi]

[-A211 [puilnm-A ]iLwiI] -All K Ct IJ (90)

Taking the top partition of Eq (90) and rearranging yields

Xizi-IAllzi+Al 2 wi] = KsCvi (91)
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Defining A, = [ All A1 2 1, Eq (91) can be written as

[AI+KsC]V = Z (92)

where

V = [VI V2 .... Vr]

Z = [X 1,z X2.z 2 .... XrzrI (93)

In general, the V and Z matrices are complex. To alleviate the need for complex

arithmetic we use the transformation presented by Moore [ 18 1, to transform V and Z

to real matrices. Finally, Ks can be calculated from Eq (92)

Ks = [Z- A1 VI [C Vy- 1  (94)

The procedure of using Static Output Feedback method to assign eigenstructure is

implemented in a MATLAB M-File which is described in Appendix B.

2.4 Robust Eigenstructure Assignment

2.4.1 Eigenstructure Assignment. Consider a linear, time invariant system

described by Eq (1) and (2), with rank(B) = m, rank(C) = r, and the system is

controllable and observable. Andry showed in his paper [ 1] that the state trajectory

is described by
n

x(t) = Mi xo exp (Xi t) vi
i= i (95)
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where X• is an eigenvalue, vi is a corresponding eigenvector, M is the modal matrix

which is a matrix composed of individual eigenvectors of the system and xo is the

initial state. Every solution of Eq (95) represent a free response of the system, and it

depends on three quantities:

(1) Eigenvalue, which determines the decay or growth rate of the response.

(2) Eigenvector, which determines the shape of the response.

(3) Initial condition, which determines the degree to which each mode will

participate in the free

response.

If we need to use feedback to alter the time characteristics and shape of the

system transient response, both eigenvalue and eigenvector (i.e., the eigenstructure)

must be reassigned.

The eigenstructure assignment problem for full state feedback can be stated as:

given a self-conjugate set of scalar [ Xid ], i = 1,2 ...... n, and a corresponding self-

conjugate set of n dimension vectors [ vid ], i = 1, 2 ...... n, find a real (m x n) matrix K

such that r of the eigenvalues of [A + BK] are precisely those of the self-conjugate

set [ Xid ] with corresponding eigenvectors the self-conjugate set [ vid ].

Moore [ 18 1 identified the freedom offered by state feedback to assign the

eigenvalues and eigenvectors, when the eigenvalues are distinct. Moore also gave

the procedure to find the gain matrix K, which yields prescribed eigenvalues and

eigenvectors. We define

Sk = [[ XI-A] [1B] (96)

and a compatibly partitioned matrix
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Rx M (97)

where the columns of R. form a basis for the null space of Sk. For rank(B) = m, one

can show that the columns of N;, are linearly independent. With this background

Moore [ 18 1 has the following theorem:

Let [ 1q ], i = 1,2,...,n, be a self-conjugate set of distinct complex numbers.

There exists a real (m x n) matrix K such that [ A + B K] vi = Ai vi, i = 1,2 ...... n. if

and only iffor each i:

(I) [ vi 1, i = 1,2 ...... n, are a linearly independent set in Cn, the space of complex n-

vector.

(2) vi = vjF when ALi = -'j T.

(3) vi e span [ N)i 1.

The eigenstructure assignment design technique to specify the eigenvalues and

associated eigenvectors is to let

wi = K vi (98)

so that

[X• I-Alvi+BKvi = 0 (99)

can be written as

[Xi I-Al vi = B wi (100)

As already shown, all of the eigenvalues can be placed exactly, so as long as the
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desired eigenvectors lie within the achievable subspace. The only unknowns in Eq

(100) are the elements of each wi. Eq (100) can be solved for the e',meriet.,- the wi.

Once the elements of each wi have been calculated, the gain matrix K can be

determined by combining the set of n equations from Eq (98) into a sirglc matrix

equation. Define the matrices W and V as

W = [wl, w2 ...... wnl (101)

V = [vl, v2 ...... vn (102)

The matrix V containing the right eigenvectors is often referred to as the modal matrix.

Combining equations obtained from Eq (98) yields

W = K V (103)

Since the eigenvectors are linearly independent, the V matrix is nonsingular and Eq

(103) becomes

K = W V-1 (104)

In practice, the desired eigenvectors are often not achievable, not lying within

the subspace spanned by [ Xi I - A 1-1 B. This means that a solution for K that will

yield a closed loop system that has the desired eigenvectors is not possi!.le. One

method to get around this problem is to project the desired eigenvectors onto the

achievable subspace, minimizing the difference between the desired and achievable

vectors. Liebst and others [ 16 1 achieve this by introducing a quadratic cost function

to be minimized subject to Eq (1(X)) as

v= ia - vid IT Pi I via- vid 1 (105)
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where Pi is a diagonal weighting matrix for the ith eigenvector. Then we can solve for

W and K matrices that come close to providing the desired eigenstructure. The

eigenstructure assignment method then provides a means to specifically place

eigenvalues and optimally place eigenvectors for a control system.

2.4.2 Eigenstructure Assignment with LQR Robustness. From the theory

discussed in section 2.2.4.1, we showed LQR possesses guaranteed stability

margins. By using full state feedback with the control law:

u = -Kx (106)

The closed loop system is:

k = (A-BK )x (107)

The gain matrix is

K = R-1 BTp (108)

so

= (A-BR-IBTp)x (109)

The achievable closed loop eigenvalues can be found by

det[ki-(A-BR-1 BTp)I = 0 (110)

The achievable right eigenvectors can be found by solving the nullspace of

[iiI-(A-BR-IBTP) Ivi = 0 (111)
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Robinson [ 22 1 and Huckabone I 11 ]used an algorithm to assign the

eigenstructure by minimizing combined distance between the elements of desired and

LQR achievable eigenstructure. They introduced a quadratic performance index J,

where

n[f)i (X di - X•ai )2 + (Vdi - OiVai )T Fvi (Vdi - iVai )]
(112)

where

fki = weighting on the ith eigenvalue

Xdi = ith desired eigenvalue

X,,ai = ith achievable eigenvalue

Vdi = ith desired eigenvector

Vai = ith achievable eigenvector

F= diagonal weighting matrix for the ith eigenvector

i= real or complex constant that minimizes (vdi - Oi Vai)

Minimizing J will minimize the combined distance between the elements of the desired

and LQR achievable eigenstructure. The weightings 1•i and Fvi allow the designer to

specify the relative importance of achieving individual elements of the eigenstructure.

Assuming a weighting of zero for any desired element will leave the algorithm free to

place that element to any necessary value. The algorithm searches for the minimum

cost T sithin the constraint of closed loop LQR described by Eq (110), (111).

Feedback gains are a function of P; where P is the solution of the algebraic Riccati

equation, which is a function of R and Q, Q need to be symmetric and positive

semidefinite and we define Q = HT H, where H is any n x n symmetric matrix. For
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ensuring R is symmetric and positive definite, we define a symmetric matrix M such

that R = MT M. During the iteration, the algorithm will vary the elements of M and H

to find the closest eigenstructure to the desired eigenstructure. Because M and H are

symmetric, the number of elements need to be varied is limited to the upper triangular

portion of each matrix. If R is restricted to p I or a diagonal matrix, the number of

elements is reduced further. After finding the achievable eigenstructure closest to

desired, the algorithm will return the finalized Q and R matrices.
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III A - 4 Aircraft System Design and Results Analysis

3.1 Design Model Description

Since aircraft flight control system design using the LQG/LTR technique is

emphasized in this thesis, two very different aircraft are studied. The first one is an A-

4 aircraft with conventional stable static stability and control surfaces, i.e., horizontal

tails for longitudinal control, ailerons and rudder for lateral and directional control.

Two models of the A-4 aircraft are used. Longitudinal control of the pitch angle

response is used as a SISO design model; design with this SISO model allows

starting with a simpler problem. Lateral-directional control of the bank and sideslip

angle responses is used as a MIMO model, so MIMO design can be evaluated. As

addressed in the previous section, the LQG/LTR methodology has drawbacks when

the design plant has right-half-plane (nonminimum phase) zeros, lightly damped poles

or moderate frequency unstable poles. An A-4 aircraft flying at 15,000 feet, 0.6 Mach

gives the typical low damping phugoid mode longitudinally in the SISO model and

Dutch roll mode laterally in the MIMO model, so these A-4 models present the lightly

damped poles problem of the LQG/LTR method. The detailed model characteristics

will be described in following section of design process.

3.2 LQG/LTR Methodology Overview

For an aircraft, the plant input is control commands and plant output is aircraft

responses. When designing control systems for aircraft, we are interested in having

the responses track the commands, so we prefer to design the LQG/LTR

compensator by breaking the loop at the plant output. By following the two step

LQG/LTR compensator design procedure in Ridgely's Technical Report 1 20 ], we will

design the loop transfer function shape or the target feedback loop (TFL) shape by
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designing the Kalman filter first, then by tuning the LQ regulator state weighting

matrix to recover target feedback loop shape. The steps are:

Step 1: Full state Kalman filter design.

Given the state space model as Eq (1) and (2), we treat F and g as

completely tunable parameters ri. ther than fixed noise intensities. The loop transfer

function of the filter is given by

TKF= C4Kf (113)

where

Ss= s I- A ]-1 (114)

Using the Kalman equality corresponding to the filter, we have the relation

• 1
[I + TKF] [I + TKF] =I + --[C(DF] [C(DI-'

Ii (115)

therefore

12
ai [I + TKJ= 1 + -Ta [CFF] _ 1

g (116)

and at low frequency, where ai[TKF]>> 1, this can be simplified to

ai[T•] 1-== (;j [C(I]

Wg (117)

Again, many choices of F and g may be made without solving Riccati equations in

order to meet the performance specifications. The same guaranteed margins hold for

the Kalman filter as for the LQ Regulator, so that crossover properties are very good.

Finally, as g -* 0
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/-gfK f --) W F (118)

where W is any orthonormal matrix. This implies

oC--=U[C fl/V-g (119)

where co c max is the maximum crossover frequency.

We wish to design an LQG/LTR feedback system which has the property that

it has zero state error to arbitrary constant (step) commands and disturbances. This

specification implies that we must have an integrator in each channel of the open loop

system. Also, we would like to have all loop singular values close together at both

low and high frequencies; this requirement often leads to designs in which all

crossover frequencies are approximately the same, so that the MIMO system has

about the same speed of response in all directions.

Since we are using the LTR method, all the desirable attributes of the design

must be reflected in TKF (or TFL). To meet the zero steady state error specifications,

we must first correctly define the design plant model, so that it contains the

necessary integrators. This can be accomplished by adding one integrator in each

control channel of our plant. Mathematically, we define the vector u(t) by

uo(t) = u(t) (120)

or

Uo(s) = (l/s) u(s) (121)

where uo is the nominal control vector. The design plant model is then defined by the

augmented dynamics and it is now an (n+m) dimensional system. In the state space
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model, the A, B and C matrices are now

0~~o 0 -~1 C=1 (122)

where Ao, Bo, Co are the original system matrices.

Now we shall choose the design matrix F to cause the TFL singular values to

be identical at both low and high frequencies. First decompose F as follows

F= LIFh (123)

We shall use the n x m matrix FL to influence the low frequency behavior of the

singular values, and the m x m matrix Fh to influence the high frequency behavior of

the singular values. Ridgely showed that FL and Fh can be chosen as

FL= - [C° A° B° 1-1  (124)

Fh=CO°T [COCO°T 1-1 (125)

so that

lim Sq (C'(jto) = (/o)(to ---ýC (126)

Now, the singular value curves have the same integral action and are close to each

other.

Step 2 : Full state loop transfer recovery using the regulator

Design the LQ Regulator with weighting matrices

Q, =HT H + q2CTVC (127)

R= p1 (128)
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where q is a scalar taking on increasingly larger values and V is an arbitrary,
2

symmetric positive definite matrix. As q - oo

K,_ _ WC
q (129)

and

G (S)K(S ) -- COB [(CIB)- 1 CDK f] = COK (130)

which is the Kalman filter loop TKF we just designed. Notice this recovery inverts the

plant.

3.3 SISO System Design and Results Analysis

3.3.1 Plant. The SISO system state space A, B matrices are shown in

Appendix A. The states, control and output are

airspeed (v)- ft/sec
AOA (cx) - deg

x=pitch rate (q) - deg/sec
Spitch razge (q) - deg/ , u = [elevator command (8ed)], y = [pitch angle]pitch angle (0) - deg

elevator

deflection (8e) - deg

The open loop plant eigenvalues, eigenvectors and zeros are given in Table 1. The

plant is stable, minimum phase, the short period mode is not well damped ( ýph = 0.3),

and the phugoid mode has very low frequency ( 0.0891 rad/sec) and .w damping ( ýph

= 0.0631). The low damping poles will be shifted by using the static output feedback

and robust eigenstructure assignment methods, so that the LQG/LTR closed loop

system won't have dominant slow poles.
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Table 1 SISO Open Loop Plant Eigenvalues, Eigenvectors and Zeros

mode short period phugoid actuator

eigenvalue -1.19±-3.5i -.0056±.0628i -20

.036±.023i -.992±.053i -.0011

.232±.126i .0024±.000li .0338
eigenvector .374±.851i -.007±.0006i .7112.1 89!-_.167i .01 87±.I11i -.0356

0 0 .7013

zeros -.7306, -.0121

3.3.2 Nominal Plant LQG/LTR Compensator Design. By following the two

step procedure stated above, we design the target feedback loop shape first. For

satisfying the zero steady state error performance requirement ( which is normal for

an fighter type aircraft like A-4), a single integrator is augmented into the plant. Since

this is a SISO case, the system just has one singular value curve (Bode magnitude

plot). Choosing the r matrix, it is not necessary to consider the maximum and

minimum singular value curves matching problem, so while choosing r and p. an

approximation of

C•bKf =- -- i[C-aIr]
(131)

to meet the performance and robustvcss specification is the primary consideration in

shaping the target loop. As long as the target loop shape stays outside the " barriers

",F can be arbitrarily chosen. The parameter p. is chosen to satisfy the system

bandwidth requirement. For this SISO design, the low and high frequency singular
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value curves matching equations are still used to calculate F, so that integral action

can be assured. l.t = .01 is chosen to have the crossover frequency around 9 rad/sec.

In tuning the Regulator to recover the Kalman filter process, Qc is chosen as

T T

QC=H H=CC (132)

because the measured variable is also the variable we want to control. p is chosen to

be unity. q=300 is selected to give a reasonable trade off between optimality and

robustness recovery.

The Target Feedback Loop (TFL) and LTR singular value curves are shown in

Figure 6. The LTR curve has -20 db/decade more roll-off than the TFL curve, as

expected. Both curves meet performance and robustness specifications. The large

hump is caused by low phugoid damping.
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Figure 6 SISO Nominal Plant TFL and LTR Singular Value Curves
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Table 2 shows the poles and zeros of the LQG/LTR compensator and closed

loop system. It shows the compensator approximately inverts the plant, putting two

zeros on real axis close to the phugoid complex poles, causing the closed loop system

phugoid mode to disappear. The compensator has two poles which go to the plant

transmission zeros as expected. Because part of compensator and closed loop plant

dynamics are high frequency, they won't dominate the system response. In the

following analysis, high frequency poles will not be listed.

Table 2 Nominal SISO LQG/LTR Compensator and Closed Loop Poles and Zeros

poles zeros

-25.47±+9.85 i -20
compensator -6.74±19.9 i -1.38±3.93 i

-.7603 -.227
-.01209 -.0121
-.88±4. lii

closed -.2378
loop -.7603
system -.0121

When angle of attack is chosen as the output, the system becomes angle of

attack to elevator response. The transmission zeros become one at high frequency

and two complex zeros close to the phugoid poles. With this configuration, the

LQG/LTR compensator will closely invert the plant. Thus when plant has

transmission zero on the real axis and close to system pole, the compensator may not

invert the plant closely.

51



The closed loop system response to a pitch angle step input is shown in figure

7. The oscillatory response due to the nominal short period mode is not well damped.

The response shows good tracking performance. The phugoid mode cannot be

observed.

i.-

A

Figure 7 S150 Nominal Plant Closed Loop Pitch Angle Step Response

3.3.3 Static Output Feedback In classical aircraft SIS0 system feedback

design, using single output feedback inner loop with proportional and integral gains,

the closed loop poles can be assigned to all positions along the root locus. But a

system has its inherent limitations on closed loop pole assignment; moving some

poles to better location can result in moving the remaining poles to a degraded

location. For instance, feedback pitch angle or airspeed can move phugoid poles to a

higher damping location, but will sacrifice short period damping; feedback pitch rate or

AGA rate can move short period poles to increased damping location, but will not

affect phugoid too much. Thus, SISO feedback design technique has a major limitation

-pole assignment is limited to the system root locus, and arbitrary closed loop pole

5 2



assignment is not possible. For MIMO systems, the root locus technique is not a

practical tool for feedback design. Hence static output feedback will be used to

reassign system poles.

3.3.3.1 Output Selection. In the feedback gain matrix equation

F = (Z- AIV) (C V)Y1 (133)

for assigning complex pair poles like phugoid or short period, the V matrix has two

columns. In order to have CV invertible, we need to have two outputs. Since

improving the plant's phugoid mode is a main concern of this design, airspeed and pitch

angle feedback makes the phugoid poles more assignable. Other combinations do not

give more assignability on phugoid poles. Output feedback can exactly assign plant

poles, but the unassigned poles will drift randomly. Selecting some combination of

two other variables as feedbacks, like pitch rate and pitch angle, the unassigned poles

will drift to unstable. Basically, the output feedback affects the pole assignability

following the classical feedback rules and depends on how the feedback variable

changes the closed loop dynamics equation. One way to select the output is to look

at the corresponding normalized eigenvector of the desired eigenvalue; if any element

of the eigenvector has relatively larger magnitude, it is more effective to changing that

mode when feeding it back. For example, the airspeed and pitch angle elements of the

phugoid eigenvector are large compared to other elements, therefore, are good

candidates for feedback.
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3.3.3.2 Pole Assignment. We will use airspeed and pitch angle output

to increased phugoid damping, keep constant phugoid frequency, and leave the other

three poles unassigned. While the phugoid assigned is to a better damping location,

the short period damping also increases. If the phugoid frequency is increased with

phugoid dampii-,g higher than 0.3, the short period poles will come to the origin.

Generally, improving one mode will sacrifice the other. Since we cannot improve both

phugoid and short period modes, and choosing phugoid poles faster than normal

(slower than .01 rad/sec) will cause the phugoid to affect pitch response, it was

decided to improve phugoid damping and not change the phugoid frequency. When

assigning phugoid poles to -.0534 ± .0468 i, the closed loop poles and static gain F

are:

closed loop poles: -.0534 ± .0468i, -1.022 ± 3.749i, -20.1

static gain F : -.0006, .0925

The phugoid poles can be assigned cxactly to the desired location, but to keep the

unassigned poles stable, the assignable region of the phugoid is limited.

3.3.3.3 LQG/LTR Compensator Design. We now augment the SOF

inner closed loop plant with a single integrator to control steady state error, then

design a target feedback loop and recover the loop transfer function. We obtain the

LQG/LTR compensator which stabilizes the SOF inner loop plant. The combined

compensator, integrator and SOF plant block diagram is given in Figure 8.
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3.3.3.2 Pole Assignment. We will use airspeed and pitch angle output

to increased phugoid damping, keep constant phugoid frequency, and leave the other

Oiree poles unassigned. While the phugoid assigned is to a better damping location,

the short period damping also increases. If the phugoid frequency is increased with

phugoid damping higher than 0.3, the short period poles will come to the origin.

Generally, improving one mode will sacrifice the other. Since we cannot improve both

phugoid and short period modes, and choosing phugoid poles faster than normal

(slower than .01 rad/sec) will cause the phugoid to affect pitch response, it was

decided to improve phugoid damping and not change the phugoid frequency. When

assigning phugoid poles to -.0534 ± .0468 i, the closed loop poles and static

gain F are:

closed loop poles: -.0534 ± .0468i, -1.022 ± 3.749i, -20.1

static gain F -.0006, .0925

The phugoid poles can be assigned exactly to the desired location, but to keep the

unassigned poles stable, the assignable region of the phugoid is limited.

3.3.3.3 LQG/LTR Compensator Design. We now augment the SOF

inner closed loop plant with a single integrator to control steady state error, then

design a target feedback loop and recover the loop transfer function. We obtain the

LQG/LTR compensator which stabilizes the SOF inner loop plant. The combined

compensator, integrator and SOF plant block diagram is given in Figure 8.
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Figure 8 LQG/LTR Compensator and Plant Block Diagram

The system in Figure 8 includes d, which are the disturbances injected at the output of

the plant, ni which is noise in the inner static output feedback loop, and no which is

the noise in the outer feedback loop measuremnets. This block diagram will be used

for all the model design analysis.

While tuning the LQ Regulator for recover the loop transfer function, the same

q and V as the nominal design are chosen, so that we can compare the system

performance and stability robustness on the same baseline. The target feedback loop

and LTR singular value curves are shown in Figure 9. The loop shape is very close to

the nominal plant designed shape, except the low damping phugoid peak does I,:

exist. System bandwidth is about the same as the nominal design.
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Figure 9 SISO SOF Plant TFL and LTR Singular Value Curves

The compensator and closed loop system poles and zeros are showed in Table

3. Notice that the compensator also does not closely invert the plant. The phugoid

mode became well damped, and short period damping is reduced compared with the

nominal design.

Table 3 SISO SOF Plant Compensator and Closed Loop System Poles and Zeros

poles zeros

-25.5_+9.86i -20.1
-6.72±1 8.96i -1.33+4.16i

compensator -.7306 -.288
-.012 -.0121

cloed -.80±£4.36i
closed -.3

loop -.7603
system -.0121
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3.3.4 Robust Eigenstructure Assignment. We use the duality of the Kalman

filter with the LQ Regulator for Huckabone's [ 11 : 78 - 103 1 Fortran program. The

inputs and outputs of the program are

[ Q, R, P, Aa, Va, 0, J ] = LQREA (A, B, Ad, Fe, Vd, Fv, tol, Rcode)

The user must provide the following inputs by defining them in MATLAB

- A and B matrices

- Ad, diagonal matrix containing the desired eigenvalues

- Fe, diagonal matrix containing the weightings for each eigenvalue

- Vd, the desired modal matrix

- Fv, a matrix containing the eigenvector weightings, columns of Fv

corresponding to columns of Vd

- tol, convergence tolerance

- Rcode, code specify type of R matrix used. Rcode = 1 is a diagonal matrix

Available outputs from the program are

- Q, LQR state weighting matrix

- R, LQR control weighting matrix

- P, unique positive semidefinite solution to the algebraic Riccati equation

- Aa, diagonal matrix containing the achievable closed loop eigenvalues

- 0, diagonal matrix containing the eigenvector difference minimization

parameter

-J, the final value of the performance index

Input the plant with integrator augmented and transpose the A,C matrices. When we

input the transposed A matrix (AT), the eigenvalues of AT matrix are the same as A
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matrix, but eigenvectors are different, the eigenvector of AT becomes the left

eigenvector. It can be derived that the left eigenvectors modal matrix (W) and right

eigenvectors (V) modal matrix have the relationship of W = [V-I]T, that is the rows

of the inverse right eigenvector matrix are the columns of the left eigenvector matrix.

We then can use above relationship to assign the desired eigenstructure of the closed

loop Kalman filter.

For this SISO design, we assign

-4.0--1.5 i

1 A-2.5±2.7 i
Fe = A 'Ad = dia{

111 -20 I1 -.0121

The desired eigenvalues are assigned to delete the phugoid mode by moving it to

higher frequency and damping. Short period eigenvalues are assigned to have better

damping and frequency also. The actuator pole is assigned to its original location, so

that actuator performance can be maintained. The desired eigenvalues are equally

weighted. Because we are not designing a flight control system to give

unconventional flying qualities, reshaping the eigenvector to have decoupled response

is not the design goal. To shorten the calculating time, eigenvectors are not assigned

and the eigenvector weighting matrix is chosen as zeros. Tolerance is selected to be

one and a diagonal control matrix is selected. The returned achievable eigenvalucs

are:

"-3.594±1.347 i]
=d -2.413±2.255 i

-20.23

-. 0121
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The cost function index is J = .8382; it has acceptable approximation to the desired

eigenvalues. Increased damping and higher frequency eigenvalues assignment was

tried with j 'sired eigenvalues like

"-4.0±-3.0 i

-20

-. 0121

The REA program returned achievable eigenvalues were:

-3.88±2.47 i

Aa =di -3.03±2.78 i
-19.99J

[ -. 0121

The achievable eigenvalues are not close to desired eigenvalues and the cost function

index is J = 1.45. Assigning less damping and slower frequency, the achievable

eigenvalues are much closer to desired, and the cost function can be reduce to J =

0.000054. Thus, there is a certain region close to original eigenvalues where the

Kalman filter can achieve the desired.

Table 4 lists the eigenvalues of the closed loop Kalman filter of original open

loop plant, static output feedback closed inner loop plant and robust eigenstructure

assignment. We know that the closed loop Kalman filter poles will be part of the

system closed loop poles. Table 4 shows robust eigenstructure assignment has

better assignability than static output feedback method in this SISO problem. The

computing time for running the LQREA program is on average 3 minutes; the short

computing time is due to low order of this SISO system , and unassigned

eigenvectors.
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Table 4 SISO Nominal, SOF, REA Designs Closed loop Kalman Filter Poles

design nominal SOF REA

-19.89 -19.98 -20.23

Kalman -10.86 -10.7 -2.41±2.25 i

filter -.883±4.1 i -.8±4.36 i -3.59-±1.34 i

closed loop -.2378 -.3 -.0121

poles -.0121 -.0121

3.3.4.1 LQG/LTR Compensator Design . The LQREA returned a

Kalman filter state weighting matrix Qf which is symmetric, positive semidefinite, and

cont:ol weighting matrix Rf, which is a diagonal matrix and positive definite. AT. CT,

Qf ind Rf are used to solve the algebraic equation

AP + PAT- PCTRflCP + HTQH = 0 (134)

then

Kf=RfICP or Kf=(Rf'CP)(f (135)

Tht CcDKf singular value curve is shown in Figure 10. The loop shape satisfies the

spe ifications. By using this robust eigenstructure assignment algorithm, and using

the ieturned state and control weighting matrices to calculate Kalman filter gain

matrix, we cannot fine tuning the CbKf loop shape , except changing the p value in

Rf= p.t 1 (136)
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so the crossover frequency can be changed. By choosing q =300, the LTR singular

value curve is also shown in Figure 10; the recovered loop shape met the

specifications. "ihe LQG/LTR compensator and closed loop system poles and zeros

are in Table 5. The closed loop short period and phugoid modes are much improved.

80 -- : '

60 ...

S 40 -- - ---

V -

hd 203 "

b T-1

-201-

i64 1.4i 1 .4±.....

.01 .01 .1 1 10 100 10021

Frequency

Figure 10 REA design C(DKf and LTR singular value curves

Table 5 SISO REA design compensator and closed loop poles and zeros

poles zeros

-25.59-+_10.16i -19.98
cmestr-6.45+±19.42i -1.24±2.97i
comenatr .7306 -1.19

-.012 -.0121

closed -3.59-t-1.34i
loop -2.41±2.26iloope -.7603
system -.0121
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3.3.5 Results Comparison. By comparing the closed loop poles of the nominal

plant design, SOF and REA method designs in Tables 2, 3 and 5, we see that using

the SOF method, the phugoid poles cannot be assigned arbitrarily, resulting in the

closed loop poles differing somewhat from nominal. With the REA method the

phugoid poles can be moved to a further left location, resulting in a closed loop system

with good short period damping. The pitch angle step input responses are given in

Figure 11. The REA method has improved the short period damping and tracking

performance is good for all methods.

The complementary sensitivity T singular value indicates system robustness,

as stated in the " small gain theory": for a robust system

- - -1 1
a[TI=c[GK(I+GK) 1___-

cI L(co) 1 (138)

The lower tho maximum singular value of the complementary sensitivity and crossover

frequency, the more robust the closed loop system. All three complementary

sensitivity singular value curves are shown in Figure 12. The REA curve has higher

crossover frequency, since we didn't change returned the Rf matrix. If we adjust Rf to

have same crossover frequency as the nominal and SOF designs, then C[T] of the

REA design will have a lower value at high frequency, and will be more robust. The

lower the ;[T] at high frequency the better the high frequency noise rejection

capabilit",. Figure 13 shows the responses of step pitch angle input with noise

injected into the feedback path. The SOF design response has noise injected both at

inner and outer feedback path.
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In the inner loop the static gain vector is [ -.0006, .0925 1, so inner loop noise will be

attenuated. Time responses show no difference between nominal and SOF designs.

The REA design should have better noise rejection capability, if we adjust the

crossover frequency to lower (5 [T].

The sensitivity curves of all the closed loop system are shown in Figure 14.

All curves show mismatch of low frequency poles and zeros. The SOF method has

slightly lower sensitivity than nominal at low frequency. The REA method gave

lowest sensitivity at low frequency, and this should be reflected in the disturbance

rejecting capability. The A-4 gust transfer function is used in the simulation model,

and the closed loop system is excited with white Gaussian noise, cascaded with a

0.1 / (s+l) lag filter to clear the high frequency signal. The pitch angle step input with

disturbance responses of all the designs are shown in Figure 15.

The best way to analyze stability margins of a SISO system is by looking at

the Nyquist plot of the open loop system. Two points on the plot give gain and phase

margins. The closest point of the open loop transfer function gk to the (-1, 0) point

on the plot gives the gain margin. The point where gk intersects with a unit circle

centered at origin indicates the phase margin. Nyquist plots of all three designs are

shown in Figure 16. The SOF method doesn't improve the stability margin, and the

REA method has slightly better phase margins, but reducing gain margin. Because

we didn't choose a high q value for completely recovering stability robustness, the

gain and phase margins shown here are not as good as the guaranteed gain and

phase margins of a full state Kalman filter.
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3.3.6 Robustness with Perturbed Plant. For an aircraft like the A-4, which is

a subsonic fighter aircraft, the altitude / airspeed operational envelope is still

considerably broad. Different flight conditions from the nominal, !ike different Mach,

altitude or angle of attack cause the plant characteristics to differ from the nominal

plant. Other factors like measurement error, structure flexibility, etc., can perturb the

nominal plant. Flight control design is based on a certain nominal design model; when

the plant is perturbed, the controller designed for the nominal plant may not be

effective in stabilizing the perturbed plant. Suppose the actual and nominal plant has

following relationship

Ga = (I +E)GG, (139)

where Ga and Go are the actual and nominal plant , respectively. The actual plant

poles may also be affected. thus suppose the following relationship on pole location

holds:

(Re+Im)a I +l+)(Re+Im)o (140)

where Re and Im are the real and imaginary parts of the plant pole. If, given the worst

case, only the real part varies by decreasing the real value, i.e, E is negative, the

damping will decrease from nominal system. Suppose there is a - 5% perturbation of

the phugoid mode from nominal condition, ( c = -.05 ). Using the same static gain

from the SOF method and the same LQG/LTR compensators from all the designs, the

pertu;-,oi system is formed. The closed loop poles are showed in Table 6. All the

closed loop system are still stable and in the SOF design the system damping even

improvcd. Figure 17 and Figure 18 show the sensitivity and complementary

sensitivity of perturbed closed loop system. The SOF sensitivity is increased, but
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should be good for tracking and disturbance rejection. The complementary

sensitivities have no apparent change.

Table 6 Perturbed Closed Loop Poles of Nominal, SOF, REA Designs

design nominal SOF REA

-.0053 -.0053 -.0118
-.0121 -.0121 -.012

closed loop -.2366 -.2991 -.7601
pole -.7679 -.7679 -2.41±2.256 i

-.883±4.11 i -.805±4.36 i -3.598±1.34 i
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3.4 MIMO System Design and Results Analysis

3.4.1 Plant. The state space form of the MIMO plant with actuators is given

in Appendix A. The states, controls and outputs are:

sideslip angle (,8) - deg
roll rate (p) - deg/sec

bank angle (0) - deg aileron command (8ac)1
yaw rate (r) - deg/s.c | - deg / [sideslip angle1aileron deflection (6.) U rudder aommand (8r,)' bank angle

- deg -deg
rudder deflection (8r)

- deg

Table 7 MIMO open loop plant eigenvalues, eigenvectors and zero

mode dutch roll roll spiral actuator actuator

eigenvalue -.386±4.322i -1.53 -.0058 -20 -20

-.087±.066 i -.0003 .0015 -.0009 .028
-. 239-_.819 i .8368 -.0058 -.9976 -.7838

eigenvector -. 183±.072 i -.5467 .9988 .0499 .0392
.262±.39 i -.0278 .0496 -.0185 .6146
0 0 0 .0433 0
0 0 0 0 .0749

zero -207.3

The open loop eigenvalues, eigenvectors and zeros are given in Table 7. The plant

has a lightly damped Dutch roll mode ( ýDR = .0891 ), which must be moved to a

better damped location to avoid poor LQG/LTR plant inversion results. To eliminate

steady state step response error, integrators are augmented in the two control
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channels. The two inputs and outputs have the same units, and have about the same

magnitude, so scaling is not necessary for this MIMO model.

3.4.2 MIMO Loop Shaping Technique. In a MIMO system, the number of

singular value curves is determined by mini m, r J, where m and r are the dimension of

control and output, respectively. For this two input two output problem, we will have

two curves, the maximum ( ii) and minimum ( _q) singular value curves. Widely

separated d and g curves means a change in input direction will result in different

shape and magnitude of the output, thus the system characteristics will be hard to

predict. One of the steps in shaping the target feedback loop (TFL) in a MIMO

problem is to use the loop shaping techniques to match 6 and g curves as close as

possible at low, high and crossover frequency, so that system performance and

stability can be consistent with inputs in different directions. Low / high frequency

matching techniques by selecting the F matrix were described in Section 3.2. Another

method used for loop shape matching at a certain selected frequency is by forming:

C [ (oj) I- A]-' F, = 1 (141)

where jco is selected frequency. Fc = F M, where M is a so-called matching

matrix, and F is the original F matrix. Then

-l -I

M= { C[(jo))I-A] F) (142)

The M matrix will be complex, and will be approximated by its real part. The new

matrix Fc = FM should give good matching of the 6 and _ curves at the selected

frequency [19: 70 1.
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Sometimes in MIMO systems the outputs and inputs have different units or

large differences in magnitude. For instance, in the engine control problem, one

output is Rotations Per Minute (RPM) and normally has large magnitude. The other

output may be nozzle or compressor vane angle, where the unit is degrees and has

small magnitude. The d and g curves will be widely separated, and prescribed loop

shape matching techniques will not make them close enough to each other. To solve

this problem, rescale the units or magnitude of state space matrices before applying

LQG/LTR. To scale the system, given the state space model:

k (t) = A x(t) + B u(t) (143)

y t) = C xt) (144)

the scaled variables x'(t), u'(t), y'(t) are related to x (t), u (t), y (t) as:

x, (t) = Sx x (t)

u (t) = SU u (t)

y (t) = Sy y (t) (145)

where Sx, Su, Sy are diagonal and invertible matrices. Substitute Eq (145) into Eq

(143) and (144) . The scaled state space model is

x (t) = SxASx x (t) + SxBSu u(t) (146)
y (t) = SyCSxlx (0t)47

For the A-4 aircraft, the MIMO lateral and directional control model we used,

the two input and output units and magnitudes are equivalent to each other, thus

scaling is not necessary.
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3.4.3 Nominal plant LQG/LTR Compensator Design. The MIMO system TFL

singular value curves were shaped by using the low and high frequency matching

technique with pi =.01 as shown in Figure 19. Choosing q = 300 and control weighting

matrix R as an identity matrix, the LTR singular value curves are also shown in Figure

19. The LTR did not fully recover the target loop shape, because of the compromising

between optimality, robustness, and bandwidth consideration. Both curves meet the

specifications. At the Dutch roll frequency, a mismatch of the plant poles and

compensator zeros is obvious.
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Figure 19 MIMO Nominal Plant TFL and LTR Singular Value Curves

The LQG/LTR compensator and closed loop system poles are listed in Table 8.

The compensator's zeros closely invert the plant's poles. The open loop plant

transmission zero is at - 207.3 rad/sec, so the plant inversion is only on low frequency

dynamics. Because the q value is not selected large enough, the compensator's pole

77



did not goes to plant zero. The closed loop system does have a lightly damped Dutch

roll mode.

Table 8 Nominal Plant Compensator and Closed Loop System Poles and Zeros

poles zeros

-14.17±40.86 i -.327±4.28 i
-11.3 -±30.84 i -1.4635

compensator -35.79-±14.91 i -.0062

-49.29-_20.69 i -20.06
-20

-.374±4.22 i
closed -.0062
loop -1.4432
system -10.24±.837 i

-19.74
-19.99

3.4.4 Static Output Feedback and LQG/LTR Compensator Design. The

complex, low damping Dutch roll poles need to be moved to a better damping location.

Two outputs are required to move the Dutch roll complex pair poles. Bank angle and

yaw rate outputs are selected to assign the Dutch roll mode to a better damping

location; choosing other outputs always causes an unstable spiral or roll mode. While

successfully assigning Dutch roll poles, the two actuator poles wandered randomly,

and one went to around 10 rad/sec. To avoid degraded actuator affects on system

performance, another two outputs, aileron and rudder deflection are fed back to fix the

actuator modes. Like the SISO problem, there is a certain gain selection or certain

region in the complex plane where the Dutch roll poles can be assigned without the

unassigned poles drifting to undesired location. The SOF inner closed loop reassigned

poles are 1 -3.433 ± 2.655i, -.0135, -3.11, -20.98, -21.58], and the Dutch roll mode has

good damping ( • DR = 0.79 ). The roll and spiral modes are improved also. The static
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feedback gain matrix F is

FF=.0016 -.0314 -.0646 .24481

-.0121 .0481 .0323 -.4211

Standard LQG/LTR procedures and loop shape matching techniques are

applied to the SOF design with q=300, g. = .01. The TFL and LTR singular value

curves are shown in Figure 20. Both curves clear the performance and robustness

barriers ". The mismatched pole-zero peak of low damping Dutch roll mode

disappeared. The compensator and closed loop system poles and zeros are listed in

Table 9. The compensator still inverts the plant, but because the inner loop plant was

better conditioned, a low damping Dutch roll mode does not exist in the closed loop

system. The SOF method for this MIMO design demonstrated that undesired plant

inversion can be prevented.
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Figure 20 MIMO SOF Design TFL and LTR Singular Value Curves

79



Table 9 MIMO SOF Design Compensator and Closed Loop System Poles and Zeros

poles zeros

-14.29-±40.51 i -3.504±3.246 i
-11.5±30.64 i -2.664

compensator -36.27±14.88 i -.0139
-45.98±20.37 i -21.09

-21

-.0193
closed -2.497
loop -3.01±3.352 i
system -10.18

-11.37

3.4.5 Robust Eigenstructure Assignment and LQG/LTR Compensator Design.

Because SOF method has good LQG/LTR design results, the desired poles for

cigenstructure assignment are chosen to be the same as the SOF design closed loop

poles (see Table 9). By this choice, the results of these two method can then be

compared with each other. The MIMO open loop plant with integrators augmented

into each control channel was used. The desired eigenvalues were weighted equally

with one, with no weighting on the eigenvectors. The LQREA program returned the

Kalman filter achievable eigenvalues as

"-3.028±3.346i
-2.511
-.042

Aa = diag -10.24
-11.23
-21.08
-21.12
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the cost function index was J= .(X)28 and the achievable eigenvalues are very close to

desired. The calculating time for this MIMO problem is approximately 30 minutes.

Tht Qf and Rf from the LQREA program were used to obtain the target

Kalman filter CDKf loop transfer function. The singular value curves are shown in

Figure 21. The ._ curve has very low value at low frequency and the specifications are

not met at low frequency. This undesired g! curve loop shape can not be improved

with the prescribed method. Because of the low g curve, p. cannot be selected to a

higher value to decrease the bandwidth. This is a drawback when using the Robust

Eigenstructure Assignment algorithm with LQG/LTR compensator design. By using

the REA method, we lost the best nature of LQG/LTR methodology - target loop

trans."er function shaping - which gives designer the capability to construct the

required system performance and stability characteristics according to specifications.

In order not to violate the high frequency "barrier", q=300 was chosen and the Kalman

filter loop shape was not fully recovered. The LTR singular value curves of the REA

design are also shown in Figure 21. It has same loop shape as the Kalman filter

singular value curves.

The LQG/LTR compensator and closed loop system poles and zeros are shown

in Table 10. The compensator doesn't invert the plant dynamics and it has the

dynamics required to assign closed loop poles as desired.
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Figure 21 MIMO REA Design C(IKf and LTR Singular Value Curves

Table 10 MIMO REA Design Compensator and Closed Loop Poles and Zeros

poles zeros

-13.45±45.49 i -6.3944
-11.73±29.00 i -3.23±.87 i

compensator -53.51±24.68 i -20.85±.14 i
-33.88±13.42 i -.0628

-.045
closed -1.926
loop -6.36±3.85 i
system -11.01±1.88 i
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3.4.6 Results Comparison. By looking at the LQG/LTR closed loop poles in

Table 8, 9, and 10, we see that SOF and REA design have the same assignability on

eigenvalues. REA has a larger assignable region in complex plane than SOF method.

From a time domain or transient response point of view, the REA method may be

better than the SOF method.

Bank angle step input responses from the three designs are shown in Figure

22. The SOF design's response has improved Dutch roll damping. The REA method

has large overshoot due to the closed loop bandwidth and cannot be reduced without

sacrificing sensitivity. All three designs give good tracking on bank angle input and

keep sideslip angle closed to zero. Sideslip step input does not have much practical

meaning from an aircraft flying quality point of view, and is not given. The poor loop

shape of LQG/LTR open loop transfer function GK in REA design isn't reflected here

in the step input response, since the input direction doesn't excite the shape of g

curve depicted.

Sensitivity singular value curves are shown in Figure 23. The SOF design

doesn't have the low damping peak at Dutch roll frequency that the nominal design

has. The REA design has poor sensitivity at low frequency.

The complementary sensitivity (T) singular value curves, shown in Figure 24,

display the same trend as the sensitivity. The resonant peak of low damping Dutch

roll mode does not exist in the SOF design. The REA design has higher closed loop

bandwidth, causing higher FITI at high frequency and may result in poor noise

rejection. The bank angle step input with noise response are shown in Figure 25, the

nominal and SOF designs reject noise very well. The REA design has poor noise

rejection capability as predicted by complementary sensitivity. The step input with

disturbances in sideslip angle and roll rate responses are shown in Figure 26; all

response have good disturbance rejection. The REA design doesn't show poor
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response, and may be due to the input direction not exciting the shape of the 0 curve.

The independent gain and phase margins for each design are listed in Table 11.

The SOF design has the best independent gain and phase margins. The REA design

has lower gain and margins.

Table 11 MIMO Independent Gain and Phase Margins

design nominal SOF REA

independent [ 8.04, 4.11 [-23.42, 5.72] [-6.38, 3.64]
gain margin

(db)

independent
phase margin ± 35.14 ± 55.59 + 30.15

(deg)
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3.4.7 Robustness with Perturbed Plant. The same perturbation as in the

SISO plant is added to MIMO plant, using the same LQG/LTR compensators

obtained from the unperturbed plant design, and the same static gain matrix in SOF

design. The closed loop poles for the three perturbed systems are in Table 12. In all

three designs, dutch roll damping is reduced. Using the SOF and REA method the

poles are still well-damped and don't result in undesired plant inversion.

Table 12 MIMO perturbed plant closed loop poles

design nominal SOF REA

-.0062 -.0139 -.1108

closed loop -1.44 -.4895 -2.513
pole -.369±-4.235 i -3.02±3.375 i -3.028±3.35 i

-10.22±.828 i -10.1843 -10.23

-11.3118 -11.23

The sensitivity singular value curves are given in Figure 27. The SOF design a curve

was increased and __ curve was reduced. The nominal and REA design are the same

as the unperturbed system. The complementary sensitivity curves are in Figure 28

and showed that all designs have about the same shape as the unperturbed plant.
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3.5 Summary

In aircraft longitudinal control, normally the lightly damped, low frequency

phugoid mode does not cause a problem in flying qualities. For conventional aircraft

pitch angle to elevator response, with the phugoid poles and the two zeros

( S + 1 / T01 ), ( S + 1 / T02 ) on real axis, the LQG/LTR compensator will not invert

the plant dynamics. Using SOF method cannot shift the phugoid poles far from their

original location, and the LQG/LTR design for the SOF inner closed loop plant doesn't

give too much improvement on overall closed loop system performance and stability

robustness. If the nominal plant has undesired modes at moderate frequency, like

lightly damped short period modes, an undesired plant inversion can be prevented by

using SOF method before the LQG/LTR compensator design. The REA method offer

more flexibility on assigning eigenvalues.

In the A-4 aircraft lateral-directional MIMO control design, the SOF method

largely improved closed loop performance and stability robustness. The REA method

showed a drawback for MIMO system target loop shaping in LQG/LTR compensator

design, because once the Kalman filter or LQ Regulator state and control weighting

matrices are determined by the results of using the REA method, the loop shapes are

hard to adjust/. Thus, the REA method doesn't have frequency domain closed loop

system design flexibility.
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IV X-29 Aircraft System Design and Results Analyaia

Accounting for a moderate frequency unstable pole and non-minimum phase

zero problem, we introduce the X-29 experimental forward sweep wing aircraft at sea

level, 0.9 Mach flight condition. The X-29 is a unconventional flight vehicle. It use

canards and flaprons for pitch control instead of horizontal tail, so longitudinally it is a

MIMO system. The open loop plant of this MIMO system has one unstable pole and

a very low frequency, low damping complex pair phugoid mode. When inserting a

time delay into the system, a non-minimum phase zero is introduced. Even though

the X-29 aircraft reinforces the wing structure with a tailored composite wing skin of

the fbrward swept wing, it is still susceptible to wing divergence, a wing tip vertical

oscillatory motion relative to the wing root. It will be excited when aileron control is

used for roll control, or when doing pitch control, lift is generated on the wings. This

structural mode is rare to see in conventional aircraft in the normal flight envelope.

Control system design definitely needs to take this structural mode into account. To

avoid this mode, the closed loop system bandwidth must be kept below the wing

bending mode frequency, or like Liebst and Garrad [ 16 ], an eigenstructure

assignment technique can be used to suppress this mode. Thus, the X-29 is

expected to represent the "worst" model for LQG/LTR design, so the results from

LQG/LTR with and without static output feedback can be compared.

4.1 Plant. The X-29 experimental aircraft nominal condition is sea level, 0.9

Mach. The longitudinal control is a MIMO system with pitch controlled by canards

and flaprons. The outputs are AOA and pitch angle. The MIMO state space A and B

matrices are given in Appendix A. The states, controls and outputs are
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airspeed (u) -ft/sec
AOA ((x) - deg

x pitch angle (0)- deg [flapron deflection - deg] =[ AOA (a) j
pitch rate (q) - dLg/,,uc canard deflection deg] y pitch angle (0)
wig tip deflection - ft
wign tip rate - ft/sec

Table 13 X-29 Open Loop Plant Eigenvalues, Eigenvectors and Zeros

mode short period phugoid wing bending

eigenvalue -11.907 7.306 -.000041±.049 1i -9.87±59.27i

.1175 -.0918 .0001±.00009i -.0014±.00092i

.0810 -.1343 .0577±.0653i -.00037±.00018i

eigenvector .9648 -.9812 -.0032±.0028i .0 146±.02i
.0183 .0126 .00017 _+.00015i -.0029!-_.174i

.2189 .0926 .00006±.000008i .999--.013i

.0041 -.0019 .00002±.000002i .(X)002±.0(X)002i

zeros -.000148, -7.076±65.17i

The open loop plant eigenvalues, eigenvectors and zeros are listed in Table

13. The plant has an unstable pole at 7.306 rad/sec, and is comparatively more

unstable than any aircraft. The phugoid mode is very slow ( cOn = .049 rad/sec) and

very lightly damped ( Cphu= .0008). It has a relatively low frequency wing bending

structural mode at 60 rad/sec. The plant is unstable and minimum phase. In order to

make the plant more difficult and to be more realistic for LQG/LTR design, a channel

of time delay (.05 sec) with Pade first order approximations are added to the plant, so

that one zero and one pole both at 40 rad/sec are added. The combination of unstable

and lightly damped poles, as well as non-minimum phase zero will introduce some

difficulty for LQG/LTR design.
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4.2 Nominal plant LQG/LTR compensator design. The same low and high

frequency matching technique as the A-4 aircraft MIMO design is applied. The

nominal plant TFL curves are plotted in Figure 29. There is a spiky resonant peak at

the phugoid frequency, and the curves are flat at low frequency, due to the low

frequency zero cancelled the integral action at low frequency, so it may not have

enough gain for low frequency command tracking and disturbance rejection. The ; and

g curves are widely separated at crossover frequency which makes the bandwidth

hard to predict and difficult to keep low.
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Figure 29 X-29 Nominal Plant TFL Singular Value Curve

In order to correct these problems, both control channels are augmented with

integrators; the 6 and g curves matching technique is applied at 10 rad/sec frequency.

The reshaped TFL curves are shown in Figure 30. Due to the unstable pole, the

minimum bandwidth is limited to 7.306 rad/sec, and p. is selected to keep the

bandwidth above this frequency, so that the crossover frequency can be high enough to
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cover the unstable pole. Otherwise, the LQG/LTR compensator cannot "see" this

unstable pole, and closed loop system performance may be affected. Another

restriction on the selection of g is the wing bending mode frequency. The crossover

frequency needs to be kept lower than this frequency to avoid exciting the structural

mode. A value of p = 0.5 is selected and with this value the high frequency

robustness "barrier" is violated, but with q = 300 the high frequency robustness

requirement can be met. The LTR singular value curves are also shown in Figure 30.

The unsuccessful recovery of the target feedback loop shape for the non-minimum

phase zero frequency is obvious; fortunately this is not within the system bandwidth,

and should not affect the closed loop system, it also places a limit on the maximum

allowable bandwidth.
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Figure 30 X-29 Nominal Plant Reshaped TFL and LTR Singular Value Curves

The LQG/LTR compensator and closed loop system poles and zeros are shown

in Table 14. The compensator is stabilizing and the unstable short period pole went to

the left-half-plane and became a complex pair of poles. It has decent damping and
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natural frequency. The phugoid mode has disappeared, thus the compensator does

not closely invert the plant. The wing bending mode damping is reduced slightly.

Table 14 X-29 Nominal Design Compensator and Closed Poles and Zeros

poles zeros

-48.66±85.74i -9.85±59.37i
-8.87±59.43i -2.58±1.25i

compensator -30.4±48.17i -40
-89.92±14.67i -12.33

-.0001487 -.0001488

-9.98±59.26i
closed -7.2_+9. li
loop -3.47±3.44i
system -.000148

4.3 Static Output Feedback and LQG/LTR Compensator Design. In the

nominal plant design, the unstable pole caused the minimum bandwidth limitation on

loop shaping and the lightly damped phugoid mode gave the singular value curve a

resonant peak. To avoid this problem, the unstable pole and lightly damped phugoid

poles are shifted to stable and better damping locations. By viewing the

corresponding eigenvector of the phugoid and unstable short period poles, airspeed,

AOA, and pitch angle are selected as outputs. The unstable pole is assigned to a

stable - 2.1 rad/sec location, and the phugoid poles to -.035±.035i. The achieved

closed loop poles and the static gain matrix are:

inner closed loop poles = [-2.1, -.035±.035i, - 11.62±57.88i, -14.9--14.15i l,
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With the SOF inner loop closed for the LQG/LTR compensator design, the a

and g curves matching techniques is used close to crossover frequency. Since the

unstable pole is gone, p can be chosen to lower the system bandwidth to any desired

frequency. A value of q = 3() was selected; the best TFL and LTR loop shapes

obtained are shown in Figure 31. At very low frequency some part of the _ curve

doesn't clear the low frequency "barrier', but the frequency is so low that it should not

affect closed loop system performance.
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Figure 31 X-29 SOF Design TFL and LTR Singular Value Curves

The LQGJLTR compensator and closed loop system poles and zeros are shown

in Table 15. The short period and wing bending modes have better damping than the

nominal design.
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Table 15 X-29 SOF Design Compensator and Closed Loop System Poles and Zeros

poles zeros

-47.89--7.8i - 11.54±57.56i
-9.85±5.95i -12.42±14.08i

Corpensator -33.87±40.07i -4.843
-69.84±17.99i -.0801
-.000148 -.000149

-.00015
closed -.081
loop -2.42
system --7.925±3.56i

-10. 19±59.77i

4.4 Result comparisons. From the A-4 aircraft MIMO plant design, we know

that the robust eigenstructure assignment method is good for eigenstructure

assignment, but is not suitable for follow-on LQGILTR loop shaping. Hence, we will

not use the REA method for the X-29 aircraft MIMO system design.

The closed loop system poles of the nominal and SOF designs are not very

different, because the compensators don't invert all the plant dynamics. However, by

looking at the closed loop system response of step pitch angle input shown in Figure

32, the SOF method has better damping and less overshoot due to the system

bandwidth being reduced. Non-minimum phase response ( initial response direction

opposite to the input direction ) is not very apparent, because the non-minimum zero

is located at relatively high frequency. The complementary sensitivity singular value

curves are shown in Figure 33. The nominal design has a large peak close to wing

bending mode frequency.
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Due to the higher closed loop system bandwidth, the nominal design has a higher

maximum singular value, thus less robustness at high frequency. Figure 34 shows

that both design have good noise rejection; this is due to the nominal design having

low enough GK gain at high frequency. Figure 35 is the sensitivity singular value

plots for both designs. Because the designed SOF target feedback loop shape has a

lower minimum singular value, the sensitivity of the SOF design is higher than the

nominal design, but this should not affect command tracking and disturbance rejecting

capability. The nominal design has a peaked sensitivity which is higher than the SOF

design. This affects the independent stability margins. Figure 36 shows that both

designs have good disturbance rejection.

The independent gain and phase margins are given in Table 16. The SOF

design has better stability margins; it is more robust.

Table 16 X-29 Stability Margins of Nominal and SOF Designs

design nominal SOF

independent [-5.3, 3.271 [-16.36, 5.331
gain margin

(db)

independent
phase margin ±26.44 ±50.18

(deg)
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4.5 Sunimar.v

Using the SOF method on the X-29 experimental aircraft, LQG/LTR

compensator design with unstable, non-minimum phase plant and relatively low

frequenc), structural wing bending mode. A pair of phugoid poles were assigned

sucessfully to better damping locations. One unstable short period pole was assigned

to left-half-plane. With this design, the minimum bandwidth limitation can be

removed; the closed loop system is not too susceptible to wing bending. System

robustness is improved, this is shown by reduced complementary sensitivity and

increased indept-ndent gain and phase margins.
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V Conclusion and Recommendation

This thesis showed that static output feedback (SOF) and robust

eigenstructure assignment (REA) methods can be used to improve LQG/LTR design

for aircraft flight control systems, when the plant has lightly damped, low frequency

poles. In Chapter II, background information for Linear Quadratic Gaussian and Loop

Transfer Recover (LQG/LTR) was developed. The procedure of using static output

feedback to reassign system poles was also presented. The algorithms of LQG/LTR

and use of static output feedback are written in MATLAB M-File and given in

Appendix B. The robust eigenstructure assignment algorithm was developed by

Huckabone [ 9: 78-103 ]; the LQREA program used by Huckabone for eigenstructure

assignment was used here to assign the closed loop Kalman filter eigenvalues.

Three aircraft models were used for designing LQG/LTR compensators with

the stated methods. An A-4 aircraft longitudinal control is used for a SISO model; it

has a pair of lightly damped phugoid poles. A-4 lateral directional control model which

has lightly damped Dutch roll mode, and X-29 experimental aircraft longitudinal control

model which has lightly damped phugoid, unstable short period, wing bending

structural modes and non-minimum phase zero, were used as MIMO system designs.

The X-29 model only applied Static Output Feedback method, since the Robust

Eigenstructure Assignment method has deficiencies ( observed during the A-4 MIMO

system loop shaping in LQG/LTR compensator design). From the results presented

in Chapter III and IV, following conclusions are obtained

Static Output Feedback method

In the A-4 MIMO system design, nominal plant with a low damping Dutch roll

mode, the LQG/LTR designed closed loop system has a lightly damped Dutch roll

mode. The undesired plant inversion made the closed loop time response bad. Under
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the Static Output Feedback method, the Dutch roll poles can be exactly assigned to

improve damping location as desired, but the assignable region of the desired poles is

limited, if system stability is considered. The output must be selected correctly to

assign the specific poles. This inner closed loop plant is then used for the LQG/LTR

compensator design. The closed loop system has much better damping and the

stability and robustness is also improved. In the X-29 aircraft model, the static output

feedback method also successfully assigned better damping phugoid poles, and the

system bandwidth can be reduced, making the aircraft less susceptible to the wing

bending mode. After using the Static Output Feedback method to move the unstable

pole to the left -half- plane, the closed loop system of LQG/LTR design improved

robustness. This is shown by reduced high frequency complementary sensitivity and

better independent gain and phase margins.

In SISO model design we didn't obtain much improvement by using Static

Output Feedback method. This is due to the plant not having characteristics that

allow large pole movement from the nominal plant, when using single loop constant

gain feedback. If the plant has low damping short period poles instead of low damping,

low frequency phugoid poles, and no transmission zero close to the undesired poles,

then the undesired plant inversion can be avoided by using Static Output Feedback

method.

The robustness of the gain and LQG/LTR compensator were checked by

perturbing the plant with reduced damping poles. The perturbed closed system is still

stable and performs reasonably well.

Robust Eigenstructure Assignment method

For both the SISO and MIMO A-4 aircraft models, the LQREA program was

used to assign the closed loop Kalman filter achievable eigenvalues close to the
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desired eigenvalues. In both designs, the eigenvalues can be moved closer to the

vicinity of the desired poles than the SOF method. Kalman filter closed loop

eigenvalues can be significantly changed from the nominal open loop plant. In the

SISO problem, after using the REA method the LQG/LTR closed loop system has the

best time response, but the gain margin was reduced, with the phase margin slightly

improved. In the MIMO problem, after the closed loop Kalman filter poles were

reassigned, the LQREA program returned the state weighting matrix Qf and control

weighting matrix Rf. With this fixed Qf and Rf, we can not reshape the Kalman filter

transfer function using the standard LQG/LTR loop shaping techniques; that is, the

frequency domain loop shaping is not feasible if we use the Robust Eigenstructure

Assignment algorithm. For most system, where full state feedback is not possible,

combined LQ Regulator and estimator (LQG) is required for compensator design. If

the Robust Eigenstructure Assignment method for LQG/LTR compensator design is

used, the performance and stability robustness will be hard to design.

The Robust Eigenstructure Assignment algorithm was designed mainly for the

usage of assign eigenstructure with the constraints of closed loop eigenstructure of

LQR or Kalman filter, not for LQG/LTR compensator design. And the comparisons on

performances and stability robustness with SOF design were based on the LQG/LTR

design results. Thus the result of comparisons did not reflect either designing

methodology is superior than the other.

Recommendation for further research

In LQG/LTR design, the closed loop poles are determined by the designed

Kalman filter and the tuned LQ Regulator. From the results of this study, the

compensator will invert the plant dynamics if there is no system transmission zeros

close to system pole. If there is transmission zero on the real axis which close to any
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of the poles, then the pole will not have compensator's zero close to it and the plant

inversion will not happen. The closeness of a compensator zero to an open loop plant

pole is also affected by the F matrix chosen for loop shaping. Compensator and plant

pole-zero relations will affect the closed loop system characteristics, How the

compensator characteristics are affected by transmission zeros and the choosing of

the F matrix in LQG/LTR design is worth some study.

It has been shown that the Robust Eigenstructure Assignment algorithm is

excellent for assigning eigenstructure with good robustness. The LQREA program

used is the combination of several subroutines in different softwares; it is mainly for

assigning the eigenstructure of a full state LQ Regulator or Kalman filter design.

Expanding it for other robust compensator designs like LQG/LTR, or changing the

form of the returned Q and R matrices, may improved the flexibility of using the output

of the program.
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Appendix A : Plant State Space Models

A-4 Aircraft Longitudinal Control State Space A, B matrices:

-0.0129 -0.0651 0 -0.5585 0 1
-0.0091 -0.8166 1.0000 0 -0.0896

A= -0.0201 -12.3900) -1.4200) 0 - 19.4400 B 0
0 0 1.0000 0 0 '
0 0 0 0 -20.0000 201

A-4 Aircraft Lateral Directional Control State Space A, B Matrices

-0.228 0 0.05 -1 -0.074 0.79 00"
-34.9 -1.516 0 0.875 426 199.2 0 0

0 1 0 0 0 0 00
A = 18.73 0.0398 0 -0.565 9.6 -166 , B = 0

0 0 0 0 -20 0 20 0
0 0 0 0 0 -20 020

X-29 Longitudinal Control State Space A, B Matrices:

.000526 .092764 -.562 -.2536 -. 1405 .0015
-.0036887 -2.8810 -.0004672 1.006 4.3699 -.046879

0 0 0 1 0 0
A = .000116 79.560 00001475 -.831 -60.447 1.0096

0 0 0 0 0 1
-.. ,439 -543.84 -.00000118 1.1589 -3642 -20.64

1,2296 .49255
-5.5524 -15.324

0 0
B- -233.28 1839.9

0 0
-1298.5 147.50

0 0
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Appendix B :Static Output Feedback Eigenstructure Assignment

% Assign eigenvalues and eigenvectors:

%%do a loop to calculate different eigenvalues with increasing
damping.
%%calculate projection of desired eigenvector on achievable
e i gen vector.

for imh=4.3:-.5:O
re h=( (4.34 )A2 -( imh )A2 ) A .5;
eul =-reh+i*imh
ls=inv(eul *eye(6)-am)*bm;
val =ls*inv(ls'*ls)*ls'*vdd;

eu2=-21;
ls=inv(eu2 *eye(6)-am)*bm;
va2=ls*inv(ls' *ls)*ls'*vdal;

eu3=-21;
ls=inv(eu3 *eye(6)-am)*bm;
va3=ls*inv(ls'*ls)*ls'*vda2;

% Achievable eigenvector matrix
va=[val va2 va3];

% model transformation

ti=[bm tp]
at=inv(ti)*am*ti;
ct=cm*ti;

%Partition A matrix
al=at(l :2,:);

%separate real and imaginary part of eigenvector
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vtl=[real(vt(:,1)) imag(vt(:,1)) vt(:,2) vt(:,3) 1

%calculate Z matrix and separate real and imaginary parts
Z-[eul *vt(1 :2,1) eu2*vt(1 :2,2) eu3*vt(1 :2,3) 1

zl=[real(z(1:2,l)) imag(z(1:2,1)) z(1:2,2) z(1:2,3) ]

%calculate output feedback gain matrix
f=(zl-al *vtl)*inv(ct*vtl)

%plot the movement of assigned ploes while desired pole select
differently

ac=am+bm*f*csl;
[p,z]=pzmap(ac ,bm,cm,dml)
axis([-22,8,- 10,101);
pzmap(ac,bm,cslI,dm I)
%if eu2==-.5
if imh==4.32
hold
end
end

hold off

title('poles movement w/ S.O.F=(phi,r),const Wn, actuator t
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